रेखा-समतल प्रतिच्छेदन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Geometric intersection of a line and plane in 3D space}}
{{Short description|Geometric intersection of a line and plane in 3D space}}
[[Image:Plane-line intersection.svg|thumb|350px|right|तीन आयामों में तीन संभावित समतल-रेखा संबंध। (प्रत्येक मामले में दिखाया गया विमान का केवल एक हिस्सा है, जो असीम रूप से दूर तक फैला हुआ है।)]]विश्लेषणात्मक [[ज्यामिति]] में, त्रि-आयामी अंतरिक्ष में एक [[रेखा (गणित)]] और एक [[विमान (गणित)]] का प्रतिच्छेदन [[खाली सेट]], एक [[बिंदु (ज्यामिति)]] या एक रेखा हो सकता है। यह पूरी लाइन है अगर वह लाइन प्लेन में एम्बेडेड है, और खाली सेट है अगर लाइन प्लेन के समानांतर है लेकिन इसके बाहर है। अन्यथा, रेखा एक ही बिंदु पर समतल को काटती है।
[[Image:Plane-line intersection.svg|thumb|350px|right|तीन आयामों में तीन संभावित समतल-रेखा संबंध। (प्रत्येक मामले में दिखाया गया समतल का केवल एक हिस्सा है, जो असीम रूप से दूर तक फैला हुआ है।)]]


इन मामलों को अलग करना, और बाद के मामलों में बिंदु और रेखा के लिए समीकरणों का निर्धारण करना, [[ कंप्यूटर चित्रलेख |कंप्यूटर चित्रलेख]] , [[ गति योजना |गति योजना]] और टकराव का पता लगाने में उपयोग होता है।
 
विश्लेषणात्मक ज्यामिति में, त्रि-आयामी स्थान में एक रेखा और एक समतल का प्रतिच्छेदन खाली सेट, एक बिंदु या एक रेखा हो सकता है। यह पूरी रेखा है यदि वह रेखा समतल में अंतःस्थापित है और यदि रेखा समतल के समानांतर है किन्तु उसके बाहर है तो यह खाली समुच्चय है। अन्यथा रेखा एक बिंदु पर समतल को काटती है।
 
इन स्थितियों को अलग करना और बाद के स्थितियों में बिंदु और रेखा के लिए समीकरणों का निर्धारण करना [[ कंप्यूटर चित्रलेख |कंप्यूटर चित्रलेख]] [[ गति योजना |गति योजना]] और टकराव का पता लगाने में उपयोग होता है।


== बीजगणितीय रूप ==
== बीजगणितीय रूप ==
सदिश संकेतन में, एक तल को बिंदुओं के समुच्चय के रूप में व्यक्त किया जा सकता है <math>\mathbf{p}</math> जिसके लिए
सदिश संकेतन में एक तल को बिंदुओं <math>\mathbf{p}</math> के समुच्चय के रूप में व्यक्त किया जा सकता है जिसके लिए
:<math>(\mathbf{p}-\mathbf{p_0})\cdot\mathbf{n} = 0</math>
:<math>(\mathbf{p}-\mathbf{p_0})\cdot\mathbf{n} = 0</math>
कहाँ <math>\mathbf{n}</math> विमान के लिए एक [[सामान्य वेक्टर]] है और <math>\mathbf{p_0}</math> विमान पर एक बिंदु है। (नोटेशन <math>\mathbf{a}\cdot\mathbf{b}</math> वैक्टर के [[डॉट उत्पाद]] को दर्शाता है <math>\mathbf{a}</math> और <math>\mathbf{b}</math>.)
जहाँ <math>\mathbf{n}</math> समतल का [[सामान्य वेक्टर|सामान्य सदिश]] है और <math>\mathbf{p_0}</math> समतल पर एक बिंदु है। (संकेत <math>\mathbf{a}\cdot\mathbf{b}</math> सदिश <math>\mathbf{a}</math> और <math>\mathbf{a}</math> के डॉट उत्पाद को दर्शाता है।


एक रेखा के लिए सदिश समीकरण है
एक रेखा के लिए सदिश समीकरण है
:<math>\mathbf{p} = \mathbf{l_0} + \mathbf{l}\ d \quad    d\in\mathbb{R}</math>
:<math>\mathbf{p} = \mathbf{l_0} + \mathbf{l}\ d \quad    d\in\mathbb{R}</math>
कहाँ <math>\mathbf{l}</math> रेखा की दिशा में एक वेक्टर है, <math>\mathbf{l_0}</math> रेखा पर एक बिंदु है, और <math>d</math> [[वास्तविक संख्या]] डोमेन में एक अदिश राशि है। समतल के समीकरण में रेखा के समीकरण को प्रतिस्थापित करने पर प्राप्त होता है
जहाँ <math>\mathbf{l}</math> रेखा की दिशा में एक सदिश है, <math>\mathbf{l_0}</math> रेखा पर एक बिंदु है, और <math>d</math> [[वास्तविक संख्या]] डोमेन में एक अदिश राशि है। समतल के समीकरण में रेखा के समीकरण को प्रतिस्थापित करने पर प्राप्त होता है
:<math>((\mathbf{l_0} + \mathbf{l}\ d)  - \mathbf{p_0})\cdot\mathbf{n} = 0.</math>
:<math>((\mathbf{l_0} + \mathbf{l}\ d)  - \mathbf{p_0})\cdot\mathbf{n} = 0.</math>
विस्तार देता है
विस्तार देता है
:<math>(\mathbf{l}\cdot\mathbf{n})\ d + (\mathbf{l_0}-\mathbf{p_0})\cdot\mathbf{n} = 0.</math>
:<math>(\mathbf{l}\cdot\mathbf{n})\ d + (\mathbf{l_0}-\mathbf{p_0})\cdot\mathbf{n} = 0.</math>
और हल करने के लिए <math>d</math> देता है
और <math>d</math> के लिए हल करना देता है
:<math>d = {(\mathbf{p_0}-\mathbf{l_0})\cdot\mathbf{n} \over \mathbf{l}\cdot\mathbf{n}}.</math>
:<math>d = {(\mathbf{p_0}-\mathbf{l_0})\cdot\mathbf{n} \over \mathbf{l}\cdot\mathbf{n}}.</math>
अगर <math>\mathbf{l}\cdot\mathbf{n} = 0</math> तो रेखा और तल समानांतर हैं। दो मामले होंगे: यदि <math>(\mathbf{p_0}-\mathbf{l_0})\cdot\mathbf{n} =0</math> तब रेखा समतल में समाहित होती है, अर्थात रेखा रेखा के प्रत्येक बिंदु पर समतल को काटती है। अन्यथा, लाइन और प्लेन का कोई चौराहा नहीं है।
यदि  <math>\mathbf{l}\cdot\mathbf{n} = 0</math> तो रेखा और समतल समानांतर हैं। दो स्थितियाँ होंगी: यदि <math>(\mathbf{p_0}-\mathbf{l_0})\cdot\mathbf{n} =0</math> तो रेखा समतल में निहित है, अर्थात्, रेखा रेखा के प्रत्येक बिंदु पर समतल को काटती है। अन्यथा,रेखा  और समतल का कोई प्रतिच्छेदन नहीं है।


अगर <math>\mathbf{l}\cdot\mathbf{n} \ne 0</math> चौराहे का एक बिंदु है। का मान है <math>d</math> गणना की जा सकती है और प्रतिच्छेदन बिंदु, <math>\mathbf{p}</math>, द्वारा दिया गया है
यदि  <math>\mathbf{l}\cdot\mathbf{n} \ne 0</math> प्रतिच्छेदन का एक बिंदु है। <math>d</math> के मान की गणना की जा सकती है और प्रतिच्छेदन बिंदु <math>\mathbf{p}</math> द्वारा दिया जाता है
:<math>\mathbf{p} = \mathbf{l_0} + \mathbf{l}\ d</math>.
:<math>\mathbf{p} = \mathbf{l_0} + \mathbf{l}\ d</math>.


== पैरामीट्रिक रूप ==
== पैरामीट्रिक रूप ==
[[Image:Line plane.svg|thumb|300px|right|लाइन और प्लेन का चौराहा।]]एक रेखा को उन सभी बिंदुओं द्वारा वर्णित किया जाता है जो एक बिंदु से दी गई दिशा हैं। बिंदुओं से गुजरने वाली रेखा पर एक सामान्य बिंदु <math>\mathbf{l}_a=(x_a, y_a, z_a)</math> और <math>\mathbf{l}_b=(x_b, y_b, z_b)</math> के रूप में दर्शाया जा सकता है
[[Image:Line plane.svg|thumb|300px|right|लाइन और समतल का चौराहा।]]एक रेखा को उन सभी बिंदुओं द्वारा वर्णित किया जाता है जो एक बिंदु से दी गई दिशा हैं। बिंदुओं <math>\mathbf{l}_a=(x_a, y_a, z_a)</math> और <math>\mathbf{l}_b=(x_b, y_b, z_b)</math> से गुजरने वाली रेखा पर एक सामान्य बिंदु को इस रूप में दर्शाया जा सकता है


:<math>\mathbf{l}_a + \mathbf{l}_{ab} t, \quad t\in \mathbb{R},</math>
:<math>\mathbf{l}_a + \mathbf{l}_{ab} t, \quad t\in \mathbb{R},</math>
कहाँ <math>\mathbf{l}_{ab}=\mathbf{l}_b - \mathbf{l}_a</math> से इंगित करने वाला वेक्टर है <math>\mathbf{l}_a</math> को <math>\mathbf{l}_b</math>.


इसी प्रकार बिंदुओं द्वारा परिभाषित त्रिकोण द्वारा निर्धारित विमान पर एक सामान्य बिंदु <math>\mathbf{p}_0=(x_0, y_0, z_0)</math>, <math>\mathbf{p}_1=(x_1, y_1, z_1)</math> और <math>\mathbf{p}_2=(x_2, y_2, z_2)</math> के रूप में दर्शाया जा सकता है
 
जहां <math>\mathbf{l}_{ab}=\mathbf{l}_b - \mathbf{l}_a</math> , <math>\mathbf{l}_a</math>से <math>\mathbf{l}_b</math> की ओर इंगित करते हुए सदिश है।
 
इसी प्रकार बिंदुओं द्वारा परिभाषित त्रिकोण द्वारा निर्धारित समतल पर एक सामान्य बिंदु <math>\mathbf{p}_0=(x_0, y_0, z_0)</math>, <math>\mathbf{p}_1=(x_1, y_1, z_1)</math> और <math>\mathbf{p}_2=(x_2, y_2, z_2)</math> के रूप में दर्शाया जा सकता है


:<math>\mathbf{p}_0 + \mathbf{p}_{0 1} u + \mathbf{p}_{0 2} v, \quad u,v\in\mathbb{R},</math>
:<math>\mathbf{p}_0 + \mathbf{p}_{0 1} u + \mathbf{p}_{0 2} v, \quad u,v\in\mathbb{R},</math>
कहाँ <math>\mathbf{p}_{0 1} = \mathbf{p}_1 - \mathbf{p}_0</math> से इंगित करने वाला वेक्टर है <math>\mathbf{p}_0</math> को <math>\mathbf{p}_1</math>, और <math>\mathbf{p}_{0 2} = \mathbf{p}_2 - \mathbf{p}_0</math> से इंगित करने वाला वेक्टर है <math>\mathbf{p}_0</math> को <math>\mathbf{p}_2</math>.
:जहाँ <math>\mathbf{p}_{0 1} = \mathbf{p}_1 - \mathbf{p}_0</math> से इंगित करने वाला वेक्टर है <math>\mathbf{p}_0</math> को <math>\mathbf{p}_1</math>और <math>\mathbf{p}_{0 2} = \mathbf{p}_2 - \mathbf{p}_0</math>वेक्टर है <math>\mathbf{p}_0</math> से <math>\mathbf{p}_2</math> की ओर इशारा करते हुए।
जिस बिंदु पर रेखा समतल को काटती है इसलिए समतल पर बिंदु के समान रेखा पर बिंदु सेट करके वर्णित किया जाता है, पैरामीट्रिक समीकरण देते हुए:


जिस बिंदु पर रेखा समतल को काटती है, इसलिए समतल पर बिंदु के बराबर रेखा पर बिंदु सेट करके वर्णित किया जाता है, पैरामीट्रिक समीकरण देते हुए:
:<math>\mathbf{l}_a + \mathbf{l}_{ab} t = \mathbf{p}_0 + \mathbf{p}_{0 1} u + \mathbf{p}_{0 2} v.</math>
:<math>\mathbf{l}_a + \mathbf{l}_{ab} t = \mathbf{p}_0 + \mathbf{p}_{0 1} u + \mathbf{p}_{0 2} v.</math>
इस रूप में फिर से लिखा जा सकता है
इस रूप में फिर से लिखा जा सकता है
:<math>\mathbf{l}_a - \mathbf{p}_0 =  - \mathbf{l}_{ab} t + \mathbf{p}_{0 1} u + \mathbf{p}_{0 2} v,</math>
:<math>\mathbf{l}_a - \mathbf{p}_0 =  - \mathbf{l}_{ab} t + \mathbf{p}_{0 1} u + \mathbf{p}_{0 2} v,</math>
जिसे मैट्रिक्स रूप में व्यक्त किया जा सकता है
जिसे आव्यूह रूप में व्यक्त किया जा सकता है
:<math> \begin{bmatrix} \mathbf{l}_a - \mathbf{p}_0 \end{bmatrix} = \begin{bmatrix} - \mathbf{l}_{ab} & \mathbf{p}_{0 1} & \mathbf{p}_{0 2} \end{bmatrix} \begin{bmatrix} t \\ u \\ v \end{bmatrix}, </math>
:<math> \begin{bmatrix} \mathbf{l}_a - \mathbf{p}_0 \end{bmatrix} = \begin{bmatrix} - \mathbf{l}_{ab} & \mathbf{p}_{0 1} & \mathbf{p}_{0 2} \end{bmatrix} \begin{bmatrix} t \\ u \\ v \end{bmatrix}, </math>
जहाँ सदिशों को स्तंभ सदिशों के रूप में लिखा जाता है।
जहाँ सदिशों को स्तंभ सदिशों के रूप में लिखा जाता है।


यह रैखिक समीकरणों की एक प्रणाली का निर्माण करता है जिसे हल किया जा सकता है <math>t</math>, <math>u</math> और <math>v</math>. यदि समाधान शर्त को पूरा करता है <math>t \in [0,1],</math>, तो प्रतिच्छेदन बिंदु के बीच रेखा खंड पर है <math>\mathbf{l}_a</math> और <math>\mathbf{l}_b</math>, अन्यथा यह लाइन पर कहीं और है। इसी तरह, अगर समाधान संतुष्ट करता है <math>u,v \in [0,1],</math>, तो प्रतिच्छेदन बिंदु बिंदु द्वारा गठित समांतर [[चतुर्भुज]] में है <math>\mathbf{p}_0</math> और वैक्टर <math>\mathbf{p}_{0 1}</math> और <math>\mathbf{p}_{0 2}</math>. यदि समाधान अतिरिक्त रूप से संतुष्ट करता है <math>(u+v) \leq 1</math>, तो प्रतिच्छेदन बिंदु तीन बिंदुओं से बने त्रिभुज में स्थित है <math>\mathbf{p}_0</math>, <math>\mathbf{p}_1</math> और <math>\mathbf{p}_2</math>.
यह रैखिक समीकरणों की एक प्रणाली का निर्माण करता है जिसे हल किया जा सकता है <math>t</math>, <math>u</math> और <math>v</math>. यदि समाधान शर्त को पूरा करता है <math>t \in [0,1],</math>, तो प्रतिच्छेदन बिंदु के बीच रेखा खंड पर है <math>\mathbf{l}_a</math> और <math>\mathbf{l}_b</math>, अन्यथा यहरेखा  पर कहीं और है। इसी तरह, यदि  समाधान संतुष्ट करता है <math>u,v \in [0,1],</math>, तो प्रतिच्छेदन बिंदु बिंदु द्वारा गठित समांतर [[चतुर्भुज]] में है <math>\mathbf{p}_0</math> और वैक्टर <math>\mathbf{p}_{0 1}</math> और <math>\mathbf{p}_{0 2}</math>. यदि समाधान अतिरिक्त रूप से संतुष्ट करता है <math>(u+v) \leq 1</math>, तो प्रतिच्छेदन बिंदु तीन बिंदुओं से बने त्रिभुज में स्थित है <math>\mathbf{p}_0</math>, <math>\mathbf{p}_1</math> और <math>\mathbf{p}_2</math>.
 
यह रैखिक समीकरणों की एक प्रणाली का निर्माण करता है जिसे <math>t</math> <math>u</math> और <math>v</math> के लिए हल किया जा सकता है। यदि समाधान <math>t \in [0,1],</math> की स्थिति को संतुष्ट करता है, तो प्रतिच्छेदन बिंदु <math>\mathbf{l}_a</math> और <math>\mathbf{l}_b</math>, के बीच रेखा खंड पर है। अन्यथा यह रेखा पर कहीं और है। इसी तरह, यदि समाधान <math>u,v \in [0,1],</math> को संतुष्ट करता है, '''तो''' प्रतिच्छेदन बिंदु बिंदु <math>\mathbf{p}_0</math> और वैक्टर <math>\mathbf{p}_{0 1}</math> और <math>\mathbf{p}_{0 2}</math> द्वारा गठित समांतर चतुर्भुज में है। यदि समाधान अतिरिक्त रूप से <math>(u+v) \leq 1</math>को संतुष्ट करता है, तो प्रतिच्छेदन बिंदु तीन बिंदुओं <math>\mathbf{p}_0</math>, <math>\mathbf{p}_1</math> और <math>\mathbf{p}_2</math> द्वारा गठित त्रिकोण में स्थित है।


मैट्रिक्स के निर्धारक के रूप में गणना की जा सकती है
आव्यूह के निर्धारक के रूप में गणना की जा सकती है
: <math>\det(\begin{bmatrix} - \mathbf{l}_{ab} & \mathbf{p}_{0 1} & \mathbf{p}_{0 2} \end{bmatrix}) = -\mathbf{l}_{ab} \cdot (\mathbf{p}_{0 1} \times \mathbf{p}_{0 2}).</math>
: <math>\det(\begin{bmatrix} - \mathbf{l}_{ab} & \mathbf{p}_{0 1} & \mathbf{p}_{0 2} \end{bmatrix}) = -\mathbf{l}_{ab} \cdot (\mathbf{p}_{0 1} \times \mathbf{p}_{0 2}).</math>
यदि सारणिक शून्य है, तो कोई अद्वितीय हल नहीं है; रेखा या तो समतल में है या उसके समांतर है।
यदि सारणिक शून्य है, तो कोई अद्वितीय हल नहीं है; रेखा या तो समतल में है या उसके समांतर है।


यदि एक अद्वितीय समाधान मौजूद है (निर्धारक 0 नहीं है), तो इसे मैट्रिक्स व्युत्क्रम # 3 × 3 आव्यूहों के व्युत्क्रम द्वारा पाया जा सकता है और पुनर्व्यवस्थित किया जा सकता है:
यदि एक अद्वितीय समाधान उपस्थित है (निर्धारक 0 नहीं है) तो इसे आव्यूह व्युत्क्रम या 3 × 3 आव्यूहों के व्युत्क्रम द्वारा पाया जा सकता है और पुनर्व्यवस्थित किया जा सकता है:
:<math> \begin{bmatrix} t \\ u \\ v \end{bmatrix} = \begin{bmatrix} - \mathbf{l}_{ab} & \mathbf{p}_{0 1} & \mathbf{p}_{0 2} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{l}_a - \mathbf{p}_0 \end{bmatrix},</math>
:<math> \begin{bmatrix} t \\ u \\ v \end{bmatrix} = \begin{bmatrix} - \mathbf{l}_{ab} & \mathbf{p}_{0 1} & \mathbf{p}_{0 2} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{l}_a - \mathbf{p}_0 \end{bmatrix},</math>
जिसका विस्तार होता है
जिसका विस्तार होता है
Line 57: Line 64:
: <math>u = \frac{{(\mathbf{p}_{0 2} \times -\mathbf{l}_{ab})} \cdot (\mathbf{l}_a - \mathbf{p}_0)}{-\mathbf{l}_{ab} \cdot (\mathbf{p}_{0 1} \times \mathbf{p}_{0 2})}</math>
: <math>u = \frac{{(\mathbf{p}_{0 2} \times -\mathbf{l}_{ab})} \cdot (\mathbf{l}_a - \mathbf{p}_0)}{-\mathbf{l}_{ab} \cdot (\mathbf{p}_{0 1} \times \mathbf{p}_{0 2})}</math>
: <math>v = \frac{{(-\mathbf{l}_{ab} \times \mathbf{p}_{0 1})} \cdot (\mathbf{l}_a - \mathbf{p}_0)}{-\mathbf{l}_{ab} \cdot (\mathbf{p}_{0 1} \times \mathbf{p}_{0 2})}.</math>
: <math>v = \frac{{(-\mathbf{l}_{ab} \times \mathbf{p}_{0 1})} \cdot (\mathbf{l}_a - \mathbf{p}_0)}{-\mathbf{l}_{ab} \cdot (\mathbf{p}_{0 1} \times \mathbf{p}_{0 2})}.</math>
तब प्रतिच्छेदन बिंदु बराबर होता है
तब प्रतिच्छेदन बिंदु समान होता है
:<math>\mathbf{l}_a + \mathbf{l}_{ab}t</math>
:<math>\mathbf{l}_a + \mathbf{l}_{ab}t</math>




== उपयोग करता है ==
== उपयोग करता है ==
कंप्यूटर ग्राफिक्स की रे ट्रेसिंग (ग्राफिक्स) विधि में एक सतह को विमानों के टुकड़ों के एक सेट के रूप में दर्शाया जा सकता है। सतह की एक छवि बनाने के लिए प्रत्येक विमान के साथ प्रकाश की किरण के चौराहे का उपयोग किया जाता है। दृष्टि-आधारित 3डी पुनर्निर्माण में, कंप्यूटर दृष्टि का एक उपक्षेत्र, गहराई मूल्यों को आमतौर पर तथाकथित त्रिकोणासन विधि द्वारा मापा जाता है, जो प्रकाश विमान और किरण के बीच प्रतिच्छेदन को कैमरे की ओर पाता है।
कंप्यूटर ग्राफिक्स की रे ट्रेसिंग (ग्राफिक्स) विधि में एक सतह को स्थानों के टुकड़ों के एक सेट के रूप में दर्शाया जा सकता है। सतह की एक छवि बनाने के लिए प्रत्येक समतल के साथ प्रकाश की किरण के प्रतिच्छेदन का उपयोग किया जाता है। दृष्टि-आधारित 3डी पुनर्निर्माण में कंप्यूटर दृष्टि का एक उपक्षेत्र गहराई मान को सामान्यतः तथाकथित त्रिकोणासन विधि द्वारा मापा जाता है जो प्रकाश समतल और किरण के बीच प्रतिच्छेदन को कैमरे की ओर पाता है।


एल्गोरिदम को अन्य प्लानर आंकड़ों के साथ चौराहे को कवर करने के लिए सामान्यीकृत किया जा सकता है, विशेष रूप से, एक रेखा के साथ पॉलीहेड्रॉन का चौराहे।
एल्गोरिदम को अन्य प्लानर आंकड़ों के साथ प्रतिच्छेदन को आवरण करने के लिए सामान्यीकृत किया जा सकता है, विशेष रूप से एक रेखा के साथ पॉलीहेड्रॉन का चौराहे।


== यह भी देखें ==
== यह भी देखें ==
*प्लकर निर्देशांक#प्लेन-लाइन चौराहों की गणना करते हुए मिलते हैं जब लाइन को प्लकर निर्देशांक द्वारा व्यक्त किया जाता है।
*प्लकर निर्देशांक या प्लेन-लाइन चौराहों की गणना करते हुए मिलते हैं जबरेखा  को प्लकर निर्देशांक प्लेन-समतल प्रतिच्छेदन द्वारा व्यक्त किया जाता है।  
* प्लेन-प्लेन चौराहा


== बाहरी संबंध ==
== बाहरी संबंध ==

Revision as of 09:22, 23 May 2023

तीन आयामों में तीन संभावित समतल-रेखा संबंध। (प्रत्येक मामले में दिखाया गया समतल का केवल एक हिस्सा है, जो असीम रूप से दूर तक फैला हुआ है।)


विश्लेषणात्मक ज्यामिति में, त्रि-आयामी स्थान में एक रेखा और एक समतल का प्रतिच्छेदन खाली सेट, एक बिंदु या एक रेखा हो सकता है। यह पूरी रेखा है यदि वह रेखा समतल में अंतःस्थापित है और यदि रेखा समतल के समानांतर है किन्तु उसके बाहर है तो यह खाली समुच्चय है। अन्यथा रेखा एक बिंदु पर समतल को काटती है।

इन स्थितियों को अलग करना और बाद के स्थितियों में बिंदु और रेखा के लिए समीकरणों का निर्धारण करना कंप्यूटर चित्रलेख गति योजना और टकराव का पता लगाने में उपयोग होता है।

बीजगणितीय रूप

सदिश संकेतन में एक तल को बिंदुओं के समुच्चय के रूप में व्यक्त किया जा सकता है जिसके लिए

जहाँ समतल का सामान्य सदिश है और समतल पर एक बिंदु है। (संकेत सदिश और के डॉट उत्पाद को दर्शाता है।

एक रेखा के लिए सदिश समीकरण है

जहाँ रेखा की दिशा में एक सदिश है, रेखा पर एक बिंदु है, और वास्तविक संख्या डोमेन में एक अदिश राशि है। समतल के समीकरण में रेखा के समीकरण को प्रतिस्थापित करने पर प्राप्त होता है

विस्तार देता है

और के लिए हल करना देता है

यदि तो रेखा और समतल समानांतर हैं। दो स्थितियाँ होंगी: यदि तो रेखा समतल में निहित है, अर्थात्, रेखा रेखा के प्रत्येक बिंदु पर समतल को काटती है। अन्यथा,रेखा और समतल का कोई प्रतिच्छेदन नहीं है।

यदि प्रतिच्छेदन का एक बिंदु है। के मान की गणना की जा सकती है और प्रतिच्छेदन बिंदु द्वारा दिया जाता है

.

पैरामीट्रिक रूप

लाइन और समतल का चौराहा।

एक रेखा को उन सभी बिंदुओं द्वारा वर्णित किया जाता है जो एक बिंदु से दी गई दिशा हैं। बिंदुओं और से गुजरने वाली रेखा पर एक सामान्य बिंदु को इस रूप में दर्शाया जा सकता है


जहां , से की ओर इंगित करते हुए सदिश है।

इसी प्रकार बिंदुओं द्वारा परिभाषित त्रिकोण द्वारा निर्धारित समतल पर एक सामान्य बिंदु , और के रूप में दर्शाया जा सकता है

जहाँ से इंगित करने वाला वेक्टर है को और वेक्टर है से की ओर इशारा करते हुए।

जिस बिंदु पर रेखा समतल को काटती है इसलिए समतल पर बिंदु के समान रेखा पर बिंदु सेट करके वर्णित किया जाता है, पैरामीट्रिक समीकरण देते हुए:

इस रूप में फिर से लिखा जा सकता है

जिसे आव्यूह रूप में व्यक्त किया जा सकता है

जहाँ सदिशों को स्तंभ सदिशों के रूप में लिखा जाता है।

यह रैखिक समीकरणों की एक प्रणाली का निर्माण करता है जिसे हल किया जा सकता है , और . यदि समाधान शर्त को पूरा करता है , तो प्रतिच्छेदन बिंदु के बीच रेखा खंड पर है और , अन्यथा यहरेखा पर कहीं और है। इसी तरह, यदि समाधान संतुष्ट करता है , तो प्रतिच्छेदन बिंदु बिंदु द्वारा गठित समांतर चतुर्भुज में है और वैक्टर और . यदि समाधान अतिरिक्त रूप से संतुष्ट करता है , तो प्रतिच्छेदन बिंदु तीन बिंदुओं से बने त्रिभुज में स्थित है , और .

यह रैखिक समीकरणों की एक प्रणाली का निर्माण करता है जिसे और के लिए हल किया जा सकता है। यदि समाधान की स्थिति को संतुष्ट करता है, तो प्रतिच्छेदन बिंदु और , के बीच रेखा खंड पर है। अन्यथा यह रेखा पर कहीं और है। इसी तरह, यदि समाधान को संतुष्ट करता है, तो प्रतिच्छेदन बिंदु बिंदु और वैक्टर और द्वारा गठित समांतर चतुर्भुज में है। यदि समाधान अतिरिक्त रूप से को संतुष्ट करता है, तो प्रतिच्छेदन बिंदु तीन बिंदुओं , और द्वारा गठित त्रिकोण में स्थित है।

आव्यूह के निर्धारक के रूप में गणना की जा सकती है

यदि सारणिक शून्य है, तो कोई अद्वितीय हल नहीं है; रेखा या तो समतल में है या उसके समांतर है।

यदि एक अद्वितीय समाधान उपस्थित है (निर्धारक 0 नहीं है) तो इसे आव्यूह व्युत्क्रम या 3 × 3 आव्यूहों के व्युत्क्रम द्वारा पाया जा सकता है और पुनर्व्यवस्थित किया जा सकता है:

जिसका विस्तार होता है

और फिर करने के लिए

इस प्रकार समाधान दे रहे हैं:

तब प्रतिच्छेदन बिंदु समान होता है


उपयोग करता है

कंप्यूटर ग्राफिक्स की रे ट्रेसिंग (ग्राफिक्स) विधि में एक सतह को स्थानों के टुकड़ों के एक सेट के रूप में दर्शाया जा सकता है। सतह की एक छवि बनाने के लिए प्रत्येक समतल के साथ प्रकाश की किरण के प्रतिच्छेदन का उपयोग किया जाता है। दृष्टि-आधारित 3डी पुनर्निर्माण में कंप्यूटर दृष्टि का एक उपक्षेत्र गहराई मान को सामान्यतः तथाकथित त्रिकोणासन विधि द्वारा मापा जाता है जो प्रकाश समतल और किरण के बीच प्रतिच्छेदन को कैमरे की ओर पाता है।

एल्गोरिदम को अन्य प्लानर आंकड़ों के साथ प्रतिच्छेदन को आवरण करने के लिए सामान्यीकृत किया जा सकता है, विशेष रूप से एक रेखा के साथ पॉलीहेड्रॉन का चौराहे।

यह भी देखें

  • प्लकर निर्देशांक या प्लेन-लाइन चौराहों की गणना करते हुए मिलते हैं जबरेखा को प्लकर निर्देशांक प्लेन-समतल प्रतिच्छेदन द्वारा व्यक्त किया जाता है।

बाहरी संबंध