रसद वितरण: Difference between revisions
No edit summary |
No edit summary |
||
Line 19: | Line 19: | ||
mgf =<math>e^{\mu t}\Beta(1-st, 1+st)</math><br />for <math>t \in (-1/s,1/s)</math><br />and <math>\Beta</math> is the [[Beta function]]| | mgf =<math>e^{\mu t}\Beta(1-st, 1+st)</math><br />for <math>t \in (-1/s,1/s)</math><br />and <math>\Beta</math> is the [[Beta function]]| | ||
char =<math>e^{it\mu}\frac{\pi st}{\sinh(\pi st)}</math>}} | char =<math>e^{it\mu}\frac{\pi st}{\sinh(\pi st)}</math>}} | ||
संभाव्यता सिद्धांत और सांख्यिकी में, रसद वितरण एक सतत संभाव्यता वितरण है। इसका [[संचयी वितरण कार्य]] [[रसद समारोह]] है, जो [[ संभार तन्त्र परावर्तन ]] और [[फीडफॉरवर्ड न्यूरल नेटवर्क]] में दिखाई देता है। यह आकार में [[सामान्य वितरण]] जैसा दिखता है लेकिन इसमें भारी पूंछ (उच्च [[कुकुदता]]) होती है। रसद वितरण [[Tukey लैम्ब्डा वितरण|तुकी लैम्ब्डा वितरण]] का एक विशेष | संभाव्यता सिद्धांत और सांख्यिकी में, रसद वितरण एक सतत संभाव्यता वितरण है। इसका [[संचयी वितरण कार्य]] [[रसद समारोह]] है, जो [[ संभार तन्त्र परावर्तन ]] और [[फीडफॉरवर्ड न्यूरल नेटवर्क]] में दिखाई देता है। यह आकार में [[सामान्य वितरण]] जैसा दिखता है लेकिन इसमें भारी पूंछ (उच्च [[कुकुदता]]) होती है। रसद वितरण [[Tukey लैम्ब्डा वितरण|तुकी लैम्ब्डा वितरण]] का एक विशेष घटना है। | ||
== विशिष्टता == | == विशिष्टता == | ||
Line 25: | Line 25: | ||
=== संभाव्यता घनत्व समारोह === | === संभाव्यता घनत्व समारोह === | ||
जब स्थान पैरामीटर{{math|''μ''}} 0 है और स्केल पैरामीटर है{{math|''s''}} 1 है, तो रसद वितरण का प्रायिकता घनत्व | जब स्थान पैरामीटर{{math|''μ''}} 0 है और स्केल पैरामीटर है{{math|''s''}} 1 है, तो रसद वितरण का प्रायिकता घनत्व समारोह द्वारा दिया जाता है | ||
: <math> | : <math> | ||
Line 46: | Line 46: | ||
=== संचयी वितरण समारोह === | === संचयी वितरण समारोह === | ||
रसद वितरण को इसका नाम इसके संचयी वितरण | रसद वितरण को इसका नाम इसके संचयी वितरण समारोह से मिलता है, जो तार्किक समारोह के परिवार का एक उदाहरण है। रसद वितरण का संचयी वितरण समारोह भी अतिपरवलिक समारोह का एक स्केल किया गया संस्करण है। | ||
:<math>F(x; \mu, s) = \frac{1}{1+e^{-(x-\mu)/s}} = \frac12 + \frac12 \operatorname{tanh} \left(\frac{x-\mu}{2s}\right).</math> | :<math>F(x; \mu, s) = \frac{1}{1+e^{-(x-\mu)/s}} = \frac12 + \frac12 \operatorname{tanh} \left(\frac{x-\mu}{2s}\right).</math> | ||
इस समीकरण में {{math|''μ''}} माध्य है, और {{math|''s''}} [[मानक विचलन]] के समानुपाती पैमाना पैरामीटर है। | इस समीकरण में {{math|''μ''}} माध्य है, और {{math|''s''}} [[मानक विचलन]] के समानुपाती पैमाना पैरामीटर है। | ||
=== क्वांटाइल | === क्वांटाइल समारोह === | ||
रसद वितरण का व्युत्क्रम समारोह संचयी वितरण | रसद वितरण का व्युत्क्रम समारोह संचयी वितरण समारोह ([[ मात्रात्मक समारोह ]]) लॉगिट समारोह का एक सामान्यीकरण है। इसके व्युत्पन्न को क्वांटाइल डेंसिटी समारोह कहा जाता है। उन्हें इस प्रकार परिभाषित किया गया है: | ||
:<math>Q(p;\mu,s) = \mu + s \ln\left(\frac{p}{1-p}\right).</math> | :<math>Q(p;\mu,s) = \mu + s \ln\left(\frac{p}{1-p}\right).</math> | ||
Line 61: | Line 61: | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
रसद वितरण- और इसके संचयी वितरण समारोह (तार्किक समारोह) और क्वांटाइल समारोह ([[लॉगिट फ़ंक्शन]]) के एस-आकार के पैटर्न का व्यापक रूप से कई अलग-अलग क्षेत्रों में उपयोग किया गया है। | रसद वितरण- और इसके संचयी वितरण समारोह (तार्किक समारोह) और क्वांटाइल समारोह ([[लॉगिट फ़ंक्शन|लॉगिट समारोह]]) के एस-आकार के पैटर्न का व्यापक रूप से कई अलग-अलग क्षेत्रों में उपयोग किया गया है। | ||
=== रसद प्रतिगमन === | === रसद प्रतिगमन === | ||
Line 67: | Line 67: | ||
=== भौतिकी === | === भौतिकी === | ||
इस वितरण के पीडीएफ में वही कार्यात्मक रूप है जो [[फर्मी समारोह]] के व्युत्पन्न के रूप में है। अर्धचालकों और धातुओं में इलेक्ट्रॉन गुणों के सिद्धांत में, यह व्युत्पन्न इलेक्ट्रॉन परिवहन में उनके योगदान में विभिन्न इलेक्ट्रॉन ऊर्जाओं के सापेक्ष भार को निर्धारित करता है। वे ऊर्जा स्तर जिनकी ऊर्जा वितरण के माध्य ([[फर्मी स्तर]]) के सबसे करीब हैं, इलेक्ट्रॉनिक चालन जैसी प्रक्रियाओं पर हावी हैं, तापमान से प्रेरित कुछ स्मियरिंग के साथ।<ref>{{Cite book | isbn = 9780521484916 | title = The Physics of Low-dimensional Semiconductors: An Introduction | last1 = Davies | first1 = John H. | year = 1998 | publisher = Cambridge University Press }}</ref>{{rp|34}} यद्पि ध्यान दें कि फर्मी-डिराक आंकड़ों में प्रासंगिक संभाव्यता वितरण वास्तव में एक साधारण बर्नौली वितरण है, जिसमें फर्मी | इस वितरण के पीडीएफ में वही कार्यात्मक रूप है जो [[फर्मी समारोह]] के व्युत्पन्न के रूप में है। अर्धचालकों और धातुओं में इलेक्ट्रॉन गुणों के सिद्धांत में, यह व्युत्पन्न इलेक्ट्रॉन परिवहन में उनके योगदान में विभिन्न इलेक्ट्रॉन ऊर्जाओं के सापेक्ष भार को निर्धारित करता है। वे ऊर्जा स्तर जिनकी ऊर्जा वितरण के माध्य ([[फर्मी स्तर]]) के सबसे करीब हैं, इलेक्ट्रॉनिक चालन जैसी प्रक्रियाओं पर हावी हैं, तापमान से प्रेरित कुछ स्मियरिंग के साथ।<ref>{{Cite book | isbn = 9780521484916 | title = The Physics of Low-dimensional Semiconductors: An Introduction | last1 = Davies | first1 = John H. | year = 1998 | publisher = Cambridge University Press }}</ref>{{rp|34}} यद्पि ध्यान दें कि फर्मी-डिराक आंकड़ों में प्रासंगिक संभाव्यता वितरण वास्तव में एक साधारण बर्नौली वितरण है, जिसमें फर्मी समारोह द्वारा दिए गए प्रायिकता कारक हैं। | ||
रसद वितरण एक टेलीग्राफ प्रक्रिया द्वारा वर्णित एक परिमित-वेग अवमंदित यादृच्छिक गति के सीमा वितरण के रूप में उत्पन्न होता है जिसमें लगातार वेग परिवर्तनों के बीच यादृच्छिक समय में रैखिक रूप से बढ़ते मापदंडों के साथ स्वतंत्र घातीय वितरण होते हैं।<ref>A. Di Crescenzo, B. Martinucci (2010) "A damped telegraph random process with logistic stationary distribution", ''[[Applied Probability Trust|J. Appl. Prob.]]'', vol. 47, pp. 84–96.</ref> | रसद वितरण एक टेलीग्राफ प्रक्रिया द्वारा वर्णित एक परिमित-वेग अवमंदित यादृच्छिक गति के सीमा वितरण के रूप में उत्पन्न होता है जिसमें लगातार वेग परिवर्तनों के बीच यादृच्छिक समय में रैखिक रूप से बढ़ते मापदंडों के साथ स्वतंत्र घातीय वितरण होते हैं।<ref>A. Di Crescenzo, B. Martinucci (2010) "A damped telegraph random process with logistic stationary distribution", ''[[Applied Probability Trust|J. Appl. Prob.]]'', vol. 47, pp. 84–96.</ref> | ||
=== [[जल विज्ञान]] === | |||
[[जल विज्ञान]] | |||
फ़ाइल:फिटलॉगिस्टिक डिस्ट्र.टिफ|थंब|२५०प्स , [[वितरण फिटिंग]] भी देखें | फ़ाइल:फिटलॉगिस्टिक डिस्ट्र.टिफ|थंब|२५०प्स , [[वितरण फिटिंग]] भी देखें | ||
जल विज्ञान में लंबी अवधि के नदी प्रवाह और वर्षा का वितरण (उदाहरण के लिए, मासिक और वार्षिक योग, जिसमें 30 क्रमशः 360 दैनिक मान सम्मिलित हैं) को अक्सर [[केंद्रीय सीमा प्रमेय]] के अनुसार लगभग सामान्य माना जाता है।<ref>{{cite book|editor-last=Ritzema|editor-first=H.P.|title=आवृत्ति और प्रतिगमन विश्लेषण|year=1994|publisher=Chapter 6 in: Drainage Principles and Applications, Publication 16, International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands|pages=[https://archive.org/details/drainageprincipl0000unse/page/175 175–224]|url=https://archive.org/details/drainageprincipl0000unse/page/175|isbn=90-70754-33-9}}</ref> यद्पि, सामान्य वितरण को एक संख्यात्मक सन्निकटन की आवश्यकता होती है। तार्किक वितरण के रूप में, जिसे विश्लेषणात्मक रूप से समाधान किया जा सकता है, सामान्य वितरण के समान है, इसके बदले इसका उपयोग किया जा सकता है। नीली तस्वीर अक्टूबर की बारिश के लिए रसद वितरण को फिट करने का एक उदाहरण दिखाती है - जो लगभग सामान्य रूप से वितरित होती है - और यह [[द्विपद वितरण]] के आधार पर 90% विश्वास बेल्ट दिखाती है। संचयी बारंबारता विश्लेषण के भाग के रूप में वर्षा के आंकड़ों को [[साजिश रचने की स्थिति]] द्वारा दर्शाया जाता है। | जल विज्ञान में लंबी अवधि के नदी प्रवाह और वर्षा का वितरण (उदाहरण के लिए, मासिक और वार्षिक योग, जिसमें 30 क्रमशः 360 दैनिक मान सम्मिलित हैं) को अक्सर [[केंद्रीय सीमा प्रमेय]] के अनुसार लगभग सामान्य माना जाता है।<ref>{{cite book|editor-last=Ritzema|editor-first=H.P.|title=आवृत्ति और प्रतिगमन विश्लेषण|year=1994|publisher=Chapter 6 in: Drainage Principles and Applications, Publication 16, International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands|pages=[https://archive.org/details/drainageprincipl0000unse/page/175 175–224]|url=https://archive.org/details/drainageprincipl0000unse/page/175|isbn=90-70754-33-9}}</ref> यद्पि, सामान्य वितरण को एक संख्यात्मक सन्निकटन की आवश्यकता होती है। तार्किक वितरण के रूप में, जिसे विश्लेषणात्मक रूप से समाधान किया जा सकता है, सामान्य वितरण के समान है, इसके बदले इसका उपयोग किया जा सकता है। नीली तस्वीर अक्टूबर की बारिश के लिए रसद वितरण को फिट करने का एक उदाहरण दिखाती है - जो लगभग सामान्य रूप से वितरित होती है - और यह [[द्विपद वितरण]] के आधार पर 90% विश्वास बेल्ट दिखाती है। संचयी बारंबारता विश्लेषण के भाग के रूप में वर्षा के आंकड़ों को [[साजिश रचने की स्थिति]] द्वारा दर्शाया जाता है। | ||
Line 92: | Line 89: | ||
* यदि एक्स, वाई ~ एक्सपोनेंशियल (1) तो | * यदि एक्स, वाई ~ एक्सपोनेंशियल (1) तो | ||
::<math>\mu-s\log\left(\frac X Y \right) \sim \operatorname{Logistic}(\mu,s).</math> | ::<math>\mu-s\log\left(\frac X Y \right) \sim \operatorname{Logistic}(\mu,s).</math> | ||
* [[मेटलॉग वितरण]] रसद वितरण का सामान्यीकरण है, जिसमें पावर सीरीज के संदर्भ में विस्तार होता है <math>p</math> रसद मापदंडों के लिए प्रतिस्थापित किया जाता है <math>\mu</math> और <math>\sigma</math>. परिणामी मेटालॉग क्वांटाइल | * [[मेटलॉग वितरण]] रसद वितरण का सामान्यीकरण है, जिसमें पावर सीरीज के संदर्भ में विस्तार होता है <math>p</math> रसद मापदंडों के लिए प्रतिस्थापित किया जाता है <math>\mu</math> और <math>\sigma</math>. परिणामी मेटालॉग क्वांटाइल समारोह अत्यधिक आकार का लचीला है, एक सरल बंद रूप है, और रैखिक कम से कम वर्गों के साथ डेटा के लिए उपयुक्त हो सकता है। | ||
== व्युत्पत्ति == | == व्युत्पत्ति == | ||
=== उच्च क्रम क्षण === | === उच्च क्रम क्षण === | ||
nवें क्रम के केंद्रीय क्षण को क्वांटाइल | nवें क्रम के केंद्रीय क्षण को क्वांटाइल समारोह के संदर्भ में व्यक्त किया जा सकता है: | ||
: <math> | : <math> | ||
Line 114: | Line 111: | ||
* [[आधा रसद वितरण]] | * [[आधा रसद वितरण]] | ||
* संभार तन्त्र परावर्तन | * संभार तन्त्र परावर्तन | ||
* [[सिग्मॉइड फ़ंक्शन]] | * [[सिग्मॉइड फ़ंक्शन|सिग्मॉइड समारोह]] | ||
== टिप्पणियाँ == | == टिप्पणियाँ == |
Revision as of 17:32, 27 March 2023
Probability density function | |||
Cumulative distribution function | |||
Parameters |
location (real) scale (real) | ||
---|---|---|---|
Support | |||
CDF | |||
Quantile | |||
Mean | |||
Median | |||
Mode | |||
Variance | |||
Skewness | |||
Ex. kurtosis | |||
Entropy | |||
MGF |
for and is the Beta function | ||
CF |
संभाव्यता सिद्धांत और सांख्यिकी में, रसद वितरण एक सतत संभाव्यता वितरण है। इसका संचयी वितरण कार्य रसद समारोह है, जो संभार तन्त्र परावर्तन और फीडफॉरवर्ड न्यूरल नेटवर्क में दिखाई देता है। यह आकार में सामान्य वितरण जैसा दिखता है लेकिन इसमें भारी पूंछ (उच्च कुकुदता) होती है। रसद वितरण तुकी लैम्ब्डा वितरण का एक विशेष घटना है।
विशिष्टता
संभाव्यता घनत्व समारोह
जब स्थान पैरामीटरμ 0 है और स्केल पैरामीटर हैs 1 है, तो रसद वितरण का प्रायिकता घनत्व समारोह द्वारा दिया जाता है
इस प्रकार सामान्य तौर पर घनत्व है:
चूँकि यह फलन अतिशयोक्तिपूर्ण फलन सेच के वर्ग के रूप में व्यक्त किया जा सकता है, इसे कभी-कभी सेच-स्क्वायर (डी) बंटन भी कहा जाता है।[1] (यह भी देखें: अतिपरवलयिक छेदक वितरण)।
संचयी वितरण समारोह
रसद वितरण को इसका नाम इसके संचयी वितरण समारोह से मिलता है, जो तार्किक समारोह के परिवार का एक उदाहरण है। रसद वितरण का संचयी वितरण समारोह भी अतिपरवलिक समारोह का एक स्केल किया गया संस्करण है।
इस समीकरण में μ माध्य है, और s मानक विचलन के समानुपाती पैमाना पैरामीटर है।
क्वांटाइल समारोह
रसद वितरण का व्युत्क्रम समारोह संचयी वितरण समारोह (मात्रात्मक समारोह ) लॉगिट समारोह का एक सामान्यीकरण है। इसके व्युत्पन्न को क्वांटाइल डेंसिटी समारोह कहा जाता है। उन्हें इस प्रकार परिभाषित किया गया है:
वैकल्पिक मानकीकरण
रसद वितरण का एक वैकल्पिक पैरामीटर स्केल पैरामीटर व्यक्त करके प्राप्त किया जा सकता है, , मानक विचलन के संदर्भ में, , प्रतिस्थापन का उपयोग करना , जहाँ . उपरोक्त कार्यों के वैकल्पिक रूप यथोचित रूप से सीधे हैं।
अनुप्रयोग
रसद वितरण- और इसके संचयी वितरण समारोह (तार्किक समारोह) और क्वांटाइल समारोह (लॉगिट समारोह) के एस-आकार के पैटर्न का व्यापक रूप से कई अलग-अलग क्षेत्रों में उपयोग किया गया है।
रसद प्रतिगमन
सबसे साधारण अनुप्रयोगों में से एक रसद प्रतिगमन में है, जिसका उपयोग श्रेणीबद्ध चर निर्भर चर (जैसे, हाँ-नहीं विकल्प या 3 या 4 संभावनाओं का विकल्प) के मॉडलिंग के लिए किया जाता है, जितना कि मानक रैखिक प्रतिगमन का उपयोग निरंतर चर मॉडलिंग के लिए किया जाता है (उदाहरण - आय या जनसंख्या)। विशेष रूप से, तार्किक रिग्रेशन मॉडल को रसद वितरण के बाद त्रुटि चर ्स के साथ अव्यक्त चर मॉडल के रूप में तैयार किया जा सकता है। असतत पसंद मॉडल के सिद्धांत में यह वाक्यांश साधारण है, जहां रसद वितरण रसद प्रतिगमन में समान भूमिका निभाता है क्योंकि सामान्य वितरण प्रोबिट प्रतिगमन में करता है। दरअसल, तार्किक और नॉर्मल वितरण का आकार काफी समान होता है। यद्पि, रसद वितरण में भारी पूंछ वितरण होता है, जो सामान्य वितरण का उपयोग करने की तुलना में अक्सर इसके आधार पर विश्लेषण के मजबूत आंकड़ों को बढ़ाता है।
भौतिकी
इस वितरण के पीडीएफ में वही कार्यात्मक रूप है जो फर्मी समारोह के व्युत्पन्न के रूप में है। अर्धचालकों और धातुओं में इलेक्ट्रॉन गुणों के सिद्धांत में, यह व्युत्पन्न इलेक्ट्रॉन परिवहन में उनके योगदान में विभिन्न इलेक्ट्रॉन ऊर्जाओं के सापेक्ष भार को निर्धारित करता है। वे ऊर्जा स्तर जिनकी ऊर्जा वितरण के माध्य (फर्मी स्तर) के सबसे करीब हैं, इलेक्ट्रॉनिक चालन जैसी प्रक्रियाओं पर हावी हैं, तापमान से प्रेरित कुछ स्मियरिंग के साथ।[2]: 34 यद्पि ध्यान दें कि फर्मी-डिराक आंकड़ों में प्रासंगिक संभाव्यता वितरण वास्तव में एक साधारण बर्नौली वितरण है, जिसमें फर्मी समारोह द्वारा दिए गए प्रायिकता कारक हैं।
रसद वितरण एक टेलीग्राफ प्रक्रिया द्वारा वर्णित एक परिमित-वेग अवमंदित यादृच्छिक गति के सीमा वितरण के रूप में उत्पन्न होता है जिसमें लगातार वेग परिवर्तनों के बीच यादृच्छिक समय में रैखिक रूप से बढ़ते मापदंडों के साथ स्वतंत्र घातीय वितरण होते हैं।[3]
जल विज्ञान
फ़ाइल:फिटलॉगिस्टिक डिस्ट्र.टिफ|थंब|२५०प्स , वितरण फिटिंग भी देखें जल विज्ञान में लंबी अवधि के नदी प्रवाह और वर्षा का वितरण (उदाहरण के लिए, मासिक और वार्षिक योग, जिसमें 30 क्रमशः 360 दैनिक मान सम्मिलित हैं) को अक्सर केंद्रीय सीमा प्रमेय के अनुसार लगभग सामान्य माना जाता है।[4] यद्पि, सामान्य वितरण को एक संख्यात्मक सन्निकटन की आवश्यकता होती है। तार्किक वितरण के रूप में, जिसे विश्लेषणात्मक रूप से समाधान किया जा सकता है, सामान्य वितरण के समान है, इसके बदले इसका उपयोग किया जा सकता है। नीली तस्वीर अक्टूबर की बारिश के लिए रसद वितरण को फिट करने का एक उदाहरण दिखाती है - जो लगभग सामान्य रूप से वितरित होती है - और यह द्विपद वितरण के आधार पर 90% विश्वास बेल्ट दिखाती है। संचयी बारंबारता विश्लेषण के भाग के रूप में वर्षा के आंकड़ों को साजिश रचने की स्थिति द्वारा दर्शाया जाता है।
शतरंज रेटिंग
संयुक्त राज्य अमेरिका शतरंज संघ औरएफआईडीई ने शतरंज रेटिंग की गणना के लिए अपने फॉर्मूले को सामान्य वितरण से तार्किक वितरण में बदल दिया है; एलो रेटिंग प्रणाली पर लेख देखें (स्वयं सामान्य वितरण पर आधारित)।
संबंधित वितरण
- रसद वितरण स्वयं वितरण की नकल करता है।
- अगर तब .
- अगर समान वितरण (निरंतर)| यू (0, 1) फिर .
- अगर और तब स्वतंत्र रूप से .
- अगर और तब (योग एक रसद वितरण नहीं है)। ध्यान दें कि .
- यदि एक्स ~ तार्किक (μ, एस) तो एक्स (एक्स) ~ लॉग-तार्किक वितरण, और ऍक्स्प (एक्स) + γ ~ स्थानांतरित लॉग-तार्किक वितरण|स्थानांतरित लॉग-तार्किक.
- यदि एक्स ~ घातीय वितरण | घातीय (1) तो
- यदि एक्स, वाई ~ एक्सपोनेंशियल (1) तो
- मेटलॉग वितरण रसद वितरण का सामान्यीकरण है, जिसमें पावर सीरीज के संदर्भ में विस्तार होता है रसद मापदंडों के लिए प्रतिस्थापित किया जाता है और . परिणामी मेटालॉग क्वांटाइल समारोह अत्यधिक आकार का लचीला है, एक सरल बंद रूप है, और रैखिक कम से कम वर्गों के साथ डेटा के लिए उपयुक्त हो सकता है।
व्युत्पत्ति
उच्च क्रम क्षण
nवें क्रम के केंद्रीय क्षण को क्वांटाइल समारोह के संदर्भ में व्यक्त किया जा सकता है:
यह अभिन्न सर्वविदित है[5] और बर्नौली संख्या के संदर्भ में व्यक्त किया जा सकता है:
यह भी देखें
- सामान्यीकृत रसद वितरण
- तुकी लैम्ब्डा वितरण
- लॉग-तार्किक वितरण
- आधा रसद वितरण
- संभार तन्त्र परावर्तन
- सिग्मॉइड समारोह
टिप्पणियाँ
- ↑ Johnson, Kotz & Balakrishnan (1995, p.116).
- ↑ Davies, John H. (1998). The Physics of Low-dimensional Semiconductors: An Introduction. Cambridge University Press. ISBN 9780521484916.
- ↑ A. Di Crescenzo, B. Martinucci (2010) "A damped telegraph random process with logistic stationary distribution", J. Appl. Prob., vol. 47, pp. 84–96.
- ↑ Ritzema, H.P., ed. (1994). आवृत्ति और प्रतिगमन विश्लेषण. Chapter 6 in: Drainage Principles and Applications, Publication 16, International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands. pp. 175–224. ISBN 90-70754-33-9.
- ↑ OEIS: A001896
संदर्भ
- जॉन एस. डेकानी और रॉबर्ट ए. स्टाइन (1986)। "एक रसद वितरण के लिए सूचना मैट्रिक्स प्राप्त करने पर एक नोट"। अमेरिकी सांख्यिकीविद। अमेरिकी सांख्यिकीय संघ। 40: 220–222। डीओआई:10.2307/2684541.
- एन. बालकृष्णन (1992)। रसद वितरण की पुस्तिका। मार्सेल डेकर, न्यूयॉर्क। आईएसबीएन 0-8247-8587-8।
- जॉनसन, एन. एल.; कोट्ज़, एस.; एन. बालकृष्णन (1995)। निरंतर यूनीवेरिएट वितरण। वॉल्यूम। 2 (दूसरा संस्करण)। आईएसबीएन 0-471-58494-0।
- मोडिस, थिओडोर (1992) प्रेडिक्शन्स: सोसाइटीज टेलटेल सिग्नेचर रिवील्स द पास्ट एंड फोरकास्ट्स द फ्यूचर, साइमन एंड शूस्टर, न्यूयॉर्क। आईएसबीएन 0-671-75917-5