एक्सट ऑपरेटर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Construction in homological algebra}}
{{Short description|Construction in homological algebra}}
गणित में, एक्सट प्रकार्यक [[मैं एक आदमी के रूप में काम करता हूं]] के व्युत्पन्न प्रकार्यक हैं। [[Tor functor|Tor प्रकार्यक]] के साथ, एक्सट [[समरूप बीजगणित]] की मूल अवधारणाओं में से एक है, जिसमें [[बीजगणितीय टोपोलॉजी|बीजगणितीय सांस्थितिकी]] के विचारों का उपयोग बीजगणितीय संरचनाओं के आक्रमणकारियों को परिभाषित करने के लिए किया जाता है। [[समूह कोहोलॉजी|समूह सह-समरूपता]], लाई बीजगणित सह-समरूपता और [[होशचाइल्ड कोहोलॉजी|होशचाइल्ड सह-समरूपता]] सभी को एक्सट के संदर्भ में परिभाषित किया जा सकता है। यह नाम इस तथ्य से आता है कि पहला एक्सट समूह एक्सट<sup>1</sup> एक [[मॉड्यूल (गणित)|मापांक (गणित)]] के [[समूह विस्तार]] को दूसरे द्वारा वर्गीकृत करता है।
गणित में, एक्सट प्रकार्यक [[मैं एक आदमी के रूप में काम करता हूं|होम प्रकार्यक]] के व्युत्पन्न प्रकार्यक हैं। [[Tor functor|टॉर प्रकार्यक]] के साथ, एक्सट [[समरूप बीजगणित|समरूप बीजगणि]][[बीजगणितीय टोपोलॉजी|तीय]] की मूल अवधारणाओं में से एक है, जिसमें [[बीजगणितीय टोपोलॉजी|बीजगणितीय सांस्थितिकी]] के विचारों का उपयोग बीजगणितीय संरचनाओं के अचरों को परिभाषित करने के लिए किया जाता है। समूहों की [[समूह कोहोलॉजी|सह-समरूपता]], लाई बीजगणितीय और [[होशचाइल्ड कोहोलॉजी|साहचर्य बीजगणितीय]] सभी को एक्सट के संदर्भ में परिभाषित किया जा सकता है। यह नाम इस तथ्य से आता है कि पहला एक्सट समूह Ext<sup>1</sup> एक [[मॉड्यूल (गणित)|मापांक]] के [[समूह विस्तार|विस्तारण]] को दूसरे के द्वारा वर्गीकृत करता है।


[[एबेलियन समूह]]ों के विशेष स्थिति में, [[रेनहोल्ड बेयर]] (1934) द्वारा एक्सट प्रस्तुत किया गया था। इसका नाम [[सैमुअल एलेनबर्ग]] और [[सॉन्डर्स मैकलेन]] (1942) द्वारा रखा गया था, और सांस्थितिकी ([[कोहोलॉजी के लिए सार्वभौमिक गुणांक प्रमेय|सह-समरूपता के लिए सार्वभौमिक गुणांक प्रमेय]]) पर अनुप्रयुक्त किया गया था। किसी भी वलय (गणित) पर मापांक के लिए, एक्सट को [[ हेनरी कर्तन ]]और ईलेनबर्ग द्वारा उनकी 1956 की पुस्तक तुल्य बीजगणित में परिभाषित किया गया था।<ref>Weibel (1999); Cartan & Eilenberg (1956), section VI.1.</ref>
[[एबेलियन समूह|एबेलियन समूहों]] की विशेष स्थिति में, [[रेनहोल्ड बेयर]] (1934) द्वारा एक्सट प्रस्तुत किया गया था। इसका नाम [[सैमुअल एलेनबर्ग]] और [[सॉन्डर्स मैकलेन]] (1942) द्वारा रखा गया था और सांस्थितिकी ([[कोहोलॉजी के लिए सार्वभौमिक गुणांक प्रमेय|सह-समरूपता के लिए सार्वभौमिक गुणांक प्रमेय]]) पर अनुप्रयुक्त किया गया था। किसी भी वलय पर मापांक के लिए, एक्सट को[[ हेनरी कर्तन | हेनरी कार्टन]] और ईलेनबर्ग ने अपनी 1956 की पुस्तक तुल्य बीजगणितीय में परिभाषित किया गया था।<ref>Weibel (1999); Cartan & Eilenberg (1956), section VI.1.</ref>




== परिभाषा ==
== परिभाषा ==
R को एक वलय होने दें और R-अत्याधुनिक को R पर मापांक की [[श्रेणी (गणित)]] होने दें। ''T''(''B'') = Hom<sub>''R''</sub>(''A'', ''B'') R-अत्याधुनिक में B के लिए। (यहाँ होम<sub>''R''</sub>(, B) से B तक R-रैखिक मानचित्रों का एबेलियन समूह है; यह एक R-मापांक है यदि R [[ क्रमविनिमेय अंगूठी | क्रमविनिमेय वलय]] है)। यह R-अत्याधुनिक से एबेलियन समूह एB की श्रेणी के लिए बाएं सटीक प्रकार्यक है, और इसलिए इसमें दाएं व्युत्पन्न प्रकार्यक R हैं<sup>मैंटी. एक्सट समूह द्वारा परिभाषित एबेलियन समूह हैं
मान लीजिए कि R एक वलय और R-अत्याधुनिक को R पर मापांक की [[श्रेणी (गणित)|श्रेणी]] है। कोई इसका अर्थ बाएं R-मापांक या दाएं R-मापांक के रूप में ले सकता है। एक नियत R-मापांक ''A'' के लिए, मान लीजिए कि R-मापांक में ''B'' के लिए ''T''(''B'') = Hom<sub>''R''</sub>(''A'', ''B'') है। (यहाँ Hom<sub>''R''</sub>(''A'', ''B'') ''A'' से B तक R-रैखिक प्रतिचित्रों का एबेलियन समूह है; यह एक R-मापांक है यदि R [[ क्रमविनिमेय अंगूठी |क्रमविनिमेय]] है)। यह R-अत्याधुनिक से एबेलियन समूहों की श्रेणी के लिए एक बाएं सटीक प्रकार्यक है। Ab और इसलिए इसमें दाएं व्युत्पन्न प्रकार्यक ''R<sup>i</sup>T'' हैं। एक्सट समूह द्वारा परिभाषित एबेलियन समूह हैं।


:<math>\operatorname{Ext}_R^i(A,B)=(R^iT)(B),</math>
:<math>\operatorname{Ext}_R^i(A,B)=(R^iT)(B)</math>
एक [[पूर्णांक]] i के लिए परिभाषा के अनुसार, इसका अर्थ है: कोई भी [[इंजेक्शन संकल्प|अंतःक्षेपक संकल्प]] लें
एक [[पूर्णांक]] i के लिए परिभाषा के अनुसार, इसका अर्थ है: कोई [[इंजेक्शन संकल्प|अंतःक्षेपक वियोजन]] हैं।


:<math>0 \to B \to I^0 \to I^1 \to \cdots,</math>
:<math>0 \to B \to I^0 \to I^1 \to \cdots,</math>
B शब्द को पदच्युत कर दें और [[कोचेन कॉम्प्लेक्स|सह श्रृंखला समष्टि]] बनाएं:
B पद को पदच्युत कर दें और [[कोचेन कॉम्प्लेक्स|सह श्रृंखला समष्टि]] बनाएं:


:<math>0 \to \operatorname{Hom}_R(A,I^0) \to \operatorname{Hom}_R(A,I^1) \to \cdots.</math>
:<math>0 \to \operatorname{Hom}_R(A,I^0) \to \operatorname{Hom}_R(A,I^1) \to \cdots.</math>
प्रत्येक पूर्णांक i के लिए, Ext{{supsub|''i''|''R''}}(, B) स्थिति i पर इस समष्टि का [[चेन कॉम्प्लेक्स|श्रृंखला समष्टि]] है। यह i ऋणात्मक के लिए शून्य है। उदाहरण के लिए, Ext{{supsub|0|''R''}}(, B) होम मैप का कर्नेल (रैखिक बीजगणित) है<sub>''R''</sub>(, आई<sup>0</sup>) → होम<sub>''R''</sub>(, आई<sup>1</sup>), जो कि होम के लिए तुल्याकारी है<sub>''R''</sub>(, B)
प्रत्येक पूर्णांक i के लिए, Ext{{supsub|''i''|''R''}}(''A'', ''B'') स्थिति i पर इस समष्टि की [[चेन कॉम्प्लेक्स|सह-समरूपता]] है। यह i ऋणात्मक के लिए शून्य है। उदाहरण के लिए, Ext{{supsub|0|''R''}}(''A'', ''B'') प्रतिचित्र Hom<sub>''R''</sub>(''A'', ''I''<sup>0</sup>) → Hom<sub>''R''</sub>(''A'', ''I''<sup>1</sup>) का केंद्र है, जो Hom<sub>''R''</sub>(''A'', ''B)'' के लिए तुल्याकारी है।


एक वैकल्पिक परिभाषा एक नियत R-मापांक B के लिए प्रकार्यक G(A)=Hom(''A'', ''B'') का उपयोग करती है। यह एक प्रतिपरिवर्ती प्रकार्यक है, जिसे [[विपरीत श्रेणी]] (R-अत्याधुनिक)<sup>op</sup> से Ab के लिए बाएं सटीक प्रकार्यक के रूप में देखा जा सकता है। एक्सट समूहों को दाहिने व्युत्पन्न प्रकार्यक ''R<sup>i</sup>G'' के रूप में परिभाषित किया गया है:
एक वैकल्पिक परिभाषा एक नियत R-मापांक B के लिए प्रकार्यक G(A)=Hom(''A'', ''B'') का उपयोग करती है। यह एक प्रतिपरिवर्ती प्रकार्यक है, जिसे [[विपरीत श्रेणी]] (R-अत्याधुनिक)<sup>op</sup> से Ab के लिए बाएं सटीक प्रकार्यक के रूप में देखा जा सकता है। एक्सट समूहों को दाहिने व्युत्पन्न प्रकार्यक ''R<sup>i</sup>G'' के रूप में परिभाषित किया गया है:

Revision as of 00:26, 18 May 2023

गणित में, एक्सट प्रकार्यक होम प्रकार्यक के व्युत्पन्न प्रकार्यक हैं। टॉर प्रकार्यक के साथ, एक्सट समरूप बीजगणितीय की मूल अवधारणाओं में से एक है, जिसमें बीजगणितीय सांस्थितिकी के विचारों का उपयोग बीजगणितीय संरचनाओं के अचरों को परिभाषित करने के लिए किया जाता है। समूहों की सह-समरूपता, लाई बीजगणितीय और साहचर्य बीजगणितीय सभी को एक्सट के संदर्भ में परिभाषित किया जा सकता है। यह नाम इस तथ्य से आता है कि पहला एक्सट समूह Ext1 एक मापांक के विस्तारण को दूसरे के द्वारा वर्गीकृत करता है।

एबेलियन समूहों की विशेष स्थिति में, रेनहोल्ड बेयर (1934) द्वारा एक्सट प्रस्तुत किया गया था। इसका नाम सैमुअल एलेनबर्ग और सॉन्डर्स मैकलेन (1942) द्वारा रखा गया था और सांस्थितिकी (सह-समरूपता के लिए सार्वभौमिक गुणांक प्रमेय) पर अनुप्रयुक्त किया गया था। किसी भी वलय पर मापांक के लिए, एक्सट को हेनरी कार्टन और ईलेनबर्ग ने अपनी 1956 की पुस्तक तुल्य बीजगणितीय में परिभाषित किया गया था।[1]


परिभाषा

मान लीजिए कि R एक वलय और R-अत्याधुनिक को R पर मापांक की श्रेणी है। कोई इसका अर्थ बाएं R-मापांक या दाएं R-मापांक के रूप में ले सकता है। एक नियत R-मापांक A के लिए, मान लीजिए कि R-मापांक में B के लिए T(B) = HomR(A, B) है। (यहाँ HomR(A, B) A से B तक R-रैखिक प्रतिचित्रों का एबेलियन समूह है; यह एक R-मापांक है यदि R क्रमविनिमेय है)। यह R-अत्याधुनिक से एबेलियन समूहों की श्रेणी के लिए एक बाएं सटीक प्रकार्यक है। Ab और इसलिए इसमें दाएं व्युत्पन्न प्रकार्यक RiT हैं। एक्सट समूह द्वारा परिभाषित एबेलियन समूह हैं।

एक पूर्णांक i के लिए परिभाषा के अनुसार, इसका अर्थ है: कोई अंतःक्षेपक वियोजन हैं।

B पद को पदच्युत कर दें और सह श्रृंखला समष्टि बनाएं:

प्रत्येक पूर्णांक i के लिए, Exti
R
(A, B) स्थिति i पर इस समष्टि की सह-समरूपता है। यह i ऋणात्मक के लिए शून्य है। उदाहरण के लिए, Ext0
R
(A, B) प्रतिचित्र HomR(A, I0) → HomR(A, I1) का केंद्र है, जो HomR(A, B) के लिए तुल्याकारी है।

एक वैकल्पिक परिभाषा एक नियत R-मापांक B के लिए प्रकार्यक G(A)=Hom(A, B) का उपयोग करती है। यह एक प्रतिपरिवर्ती प्रकार्यक है, जिसे विपरीत श्रेणी (R-अत्याधुनिक)op से Ab के लिए बाएं सटीक प्रकार्यक के रूप में देखा जा सकता है। एक्सट समूहों को दाहिने व्युत्पन्न प्रकार्यक RiG के रूप में परिभाषित किया गया है:

अर्थात, कोई भी प्रक्षेपी वियोजन चयन करें,

शब्द A को हटा दें, और सह श्रृंखला समष्टि बनाएं:

तब, Exti
R
(A, B) स्थिति i पर इस परिसर की सह-समरूपता है।

कार्टन और ईलेनबर्ग ने दर्शाया कि ये निर्माण प्रक्षेपी या अंतःक्षेपी वियोजन के चयन से स्वतंत्र हैं और यह कि दोनों निर्माण एक ही एक्सट समूह उत्पन्न करते हैं।[2] इसके अतिरिक्त, एक निश्चित वलय R के लिए, एक्सट प्रत्येक चर में एक प्रकार्यक (A में प्रतिपरिवर्ती, B में सहसंयोजक) है।

एक क्रमविनिमेय वलय R और R-मापांक A और B के लिए, Exti
R
(A, B) एक R-मापांक है (HomR(A, B) इस स्थिति में एक R-मापांक है)। एक गैर-क्रमविनिमेय वलय R के लिए, Exti
R
(A, B) सामान्यतः केवल एक एबेलियन समूह है। यदि R एक वलय S पर एक बीजगणितीय है (जिसका विशेष रूप से अर्थ है कि S क्रमविनिमेय है), तो Exti
R
(A, B) कम-से-कम एक S-मापांक है।

एक्सट के गुणधर्म

यहाँ एक्सट समूहों के कुछ मूलभूत गुणधर्म और संगणनाएँ दी गई हैं।[3]

  • Ext0
    R
    (A, B) ≅ HomR(A, B) किसी भी R-मापांक A और B के लिए है।
  • बातचीत भी रखती है:
    • यदि Ext1
      R
      (A, B) = 0 सभी B के लिए, तो A प्रक्षेपी (और इसलिए Exti
      R
      (A, B) = 0 सभी i> 0 के लिए) है।
    • यदि Ext1
      R
      (A, B) = 0 सभी A के लिए, फिर B अंतःक्षेपी (और इसलिए एक्सटi
      R
      (A, B) = 0 सभी i> 0 के लिए) है।
  • सभी i ≥ 2 और सभी एबेलियन समूहों A और B के लिए है।[4]
  • यदि R एक क्रमविनिमेय वलय है और u में R एक शून्य भाजक नहीं है, तब
किसी भी R-मापांक B के लिए है। यहां B [u] B के u-विमोटन उपसमूह {x ∈ B: ux = 0} को दर्शाता है। R को वलय के पूर्णांक मान लेना, इस परिकलन का उपयोग गणना किसी भी अंतिम रूप से उत्पन्न एबेलियन समूह A के लिए किया जा सकता है।
  • पिछले उदाहरण को सामान्य करते हुए, जब कोई पहला मापांक कोज़ल समष्टि का उपयोग करके किसी नियमित अनुक्रम द्वारा एक क्रमविनिमेय वलय का भागफल होता है, तो कोई एक्सट समूहों की गणना कर सकता है।[5] उदाहरण के लिए, यदि R क्षेत्र k पर बहुपद वलय k[x1,...,xn] है, तो Ext*
    R
    (k,k) Ext1 में n जनक पर k के ऊपर बाह्य बीजगणित S है। इसके अतिरिक्त, Ext*
    R
    (k,k) बहुपद वलय R है; यह कोज़ल द्वैतता का एक उदाहरण है।
  • व्युत्पन्न प्रकार्यकों के सामान्य गुणों के अनुसार, एक्सट के लिए दो मूल सटीक अनुक्रम हैं।[6] सर्वप्रथम, R-मापांक के एक छोटे सटीक अनुक्रम 0 → K → L → M → 0 प्रपत्र के एक लंबे सटीक अनुक्रम को प्रेरित करता है।
किसी भी R-मापांक A के लिए है। इसके अतिरिक्त, एक छोटे सटीक अनुक्रम 0 → KLM → 0 प्रपत्र के एक लंबे सटीक अनुक्रम को प्रेरित करता है।
किसी भी R-मापांक B के लिए है।
  • एक्सट पहले चर में प्रत्यक्ष योग (संभवतः अनंत) लेता है और दूसरे चर में प्रत्यक्ष उत्पाद को उत्पादों में लेता है।[7] वह है:
  • मान लीजिए कि A एक क्रमविनिमेय नोथेरियन वलय R पर एक अंतिम रूप से उत्पन्न मापांक है। फिर एक्सट के स्थानीयकरण के साथ इस अर्थ में प्रारंभ होता है कि R में प्रत्येक गुणात्मक रूप से संवृत समुच्चय S के लिए, प्रत्येक R-मापांक B और प्रत्येक पूर्णांक i है।[8]


एक्सट और विस्तारण

विस्तारण की समानता

एक्सट समूह मापांक के विस्तार से उनके संबंध से अपना नाम प्राप्त करते हैं। दिए गए R-मापांक A और B, B द्वारा A का विस्तारण R-मापांक का एक छोटा सटीक अनुक्रम है।

दो विस्तारण,

एक क्रमविनिमेय आरेख होने पर समतुल्य कहा जाता है (A द्वारा B के विस्तारण के रूप में):

EquivalenceOfExtensions.png

ध्यान दें कि पाँच लेम्मा का तात्पर्य है कि मध्य शर एक समरूपता है। A द्वारा B के विस्तारण को विभाजन कहा जाता है यदि यह तुच्छ विस्तारण के समान है।

A द्वारा B के विस्तारण के समतुल्य वर्गों और Ext1
R
(A, B) के तत्वों के मध्य एक-से-एक सामंजस्य है।[9] तुच्छ विस्तारण Ext1
R
(A, B) के शून्य तत्व से मेल खाता है।

विस्तारण का बायर योग

बेयर योग Ext1
R
(A, B) पर एबेलियन समूह संरचना का एक स्पष्ट विवरण है, B द्वारा A के विस्तारण के समतुल्य वर्गों के समुच्चय के रूप में देखा जाता है।[10] अर्थात्, दो विस्तारण दिए गए,

और

पहले पर पुलबैक तैयार करें,

फिर भागफल मापांक बनाएं,

E और E' का बेयर योग विस्तारण है।

जहां पहला प्रतिचित्र और दूसरा है।

विस्तारण की समतुल्यता तक, बायर योग क्रमविनिमेय है और पहचान तत्व के रूप में तुच्छ विस्तारण है। एक विस्तारण 0 → B → EA → 0 का ऋणात्मक एक ही मापांक E को सम्मिलित करने वाला विस्तारण है, परन्तु समरूपता B → E के साथ इसके ऋणात्मक द्वारा प्रतिस्थापित किया गया है।

एबेलियन श्रेणियों में एक्सट का निर्माण

नोबुओ योनेदा ने एबेलियन समूहों Extn
C
(A, B) को परिभाषित किया, किसी एबेलियन श्रेणी C में वस्तुओं A और B के लिए; यह वियोजन के संदर्भ में परिभाषा से सहमत है यदि C के पास पर्याप्त प्रक्षेपीय या पर्याप्त अंतःक्षेपक हैं। सर्वप्रथम, Ext0
C
(A, B) = HomC(A, B) हैं। अगला, Ext1
C
(A, B) B द्वारा A के विस्तार के समतुल्य वर्गों का समुच्चय है, जो बायर योग के अंतर्गत एक एबेलियन समूह बनाता है। अंत में, उच्च एक्सट समूह Extn
C
(A, B) को n-विस्तारण के समतुल्य वर्ग के रूप में परिभाषित किया गया है, जो सटीक अनुक्रम हैं।

दो आयामों की पहचान करने वाले संबंध से उत्पन्न तुल्यता संबंध के अंतर्गत है।

यदि प्रतिचित्र है, {1, 2, ..., n} में सभी m के लिए ताकि प्रत्येक परिणामी वर्ग परिवर्तित हो जाए।

यदि कोई श्रृंखला मानचित्र ξ → ξ' है जो A और B पर तत्समक है।

उपर्युक्त दो n-आयामों का बायर योग देने से बनता है, A पर और का पुलबैक हो और B के अंतर्गत और का बहिकर्षी हो,[11] फिर विस्तारण का बायर योग है।


व्युत्पन्न श्रेणी और योनेदा उत्पाद

एक महत्वपूर्ण बिंदु यह है कि एबेलियन श्रेणी C में एक्सट समूहों को C व्युत्पन्न श्रेणी D(C) से संबंधित श्रेणी में आकारिकी के समुच्चय के रूप में देखा जा सकता है।[12] व्युत्पन्न श्रेणी की वस्तुएं C में वस्तुओं के परिसर हैं। विशेष रूप से, किसी के पास है

जहां C की एक वस्तु को डिग्री शून्य में केंद्रित एक जटिल के रूप में देखा जाता है और [i] का अर्थ है। एक जटिल i चरणों को बाईं ओर स्थानांतरित करना है। इस व्याख्या से, एक द्विरेखीय प्रतिचित्र है, जिसे कभी-कभी योनेदा उत्पाद कहा जाता है:

जो केवल व्युत्पन्न श्रेणी में आकारिता की रचना है।

योनेडा उत्पाद को अधिक प्राथमिक शब्दों में भी वर्णित किया जा सकता है। i = j = 0 के लिए, गुणनफल C श्रेणी के प्रतिचित्रों का संघटन है। सामान्यतः, उत्पाद को दो योनेडा विस्तारण को एक साथ जोड़कर परिभाषित किया जा सकता है।

वैकल्पिक रूप से, योनेडा उत्पाद को वियोजन के संदर्भ में परिभाषित किया जा सकता है (यह व्युत्पन्न श्रेणी की परिभाषा के समीप है)। उदाहरण के लिए, R-मापांक A, B, C के साथ R को वलय होने दें और P, Q, और T को A, B, C के अनुमानित वियोजन होने दें। फिर Exti
R
(A, B) को श्रृंखला प्रतिचित्र PQ[i] के श्रृंखला समस्थेयता कक्षाओं के समूह के साथ पहचाना जा सकता है। योनेदा उत्पाद श्रृंखला प्रतिचित्र बनाकर दिया गया है:

इनमें से किसी भी व्याख्या से, योनेदा उत्पाद साहचर्य है। फलस्वरूप, किसी भी R-मापांक A के लिए एक श्रेणीबद्ध वलय है। उदाहरण के लिए, यह समूह सह-समरूपता पर वलय संरचना देता है, चूंकि इसे के रूप में देखा जा सकता है। योनेडा उत्पाद की सहचारिता द्वारा भी: किसी भी R-मापांक A और B के लिए, पर एक मापांक है।

महत्वपूर्ण विशेष स्थिति

  • समूह सह-समरूपता द्वारा परिभाषित किया गया है, जहाँ G एक समूह है, M पूर्णांकों पर G का एक समूह प्रतिनिधित्व है और G का समूह वलय है।
  • क्षेत्र k और A-द्विप्रतिरूपक M पर बीजगणित A के लिए, होशचाइल्ड सह-समरूपता द्वारा परिभाषित किया गया है:
  • लाई बीजगणितीय सह-समरूपता द्वारा परिभाषित किया गया है, जहाँ क्रमविनिमेय वलय k पर एक लाई बीजगणित है, M एक -मापांक है और सार्वभौमिक आवृत बीजगणित है।
  • एक सांस्थितिक समष्टि X के लिए, पूली सह-समरूपता को इस रूप में परिभाषित किया जा सकता है। यहाँ एक्सट को X पर एबेलियन के पुली की एबेलियन श्रेणी में लिया गया है और स्थानीय स्थिरांक -मूल्यवान फलन का पुली ​​है।
  • अवशिष्ट क्षेत्र k के साथ क्रमविनिमेय नोथेरियन स्थानीय वलय R के लिए, एक श्रेणीबद्ध लाई बीजगणितीय π*(R) पर k का सार्वभौमिक आवृत बीजगणित है, जिसे R के समस्थेयता लाई बीजगणित के रूप में जाना जाता है (सटीक होने के लिए, जब k की विलक्षणता 2 होती है, π*(R) को एक समायोजित लाई बीजगणितीय के रूप में देखा जा सकता है)।[13] एंड्रे-क्विलन सह-समरूपता D*(k/R,k) से π*(R) तक श्रेणीबद्ध लाई बीजगणितीय का एक प्राकृतिक समरूपता है, जो एक समरूपता है यदि k में विलक्षणता शून्य है।[14]


यह भी देखें

टिप्पणियाँ

  1. Weibel (1999); Cartan & Eilenberg (1956), section VI.1.
  2. Weibel (1994), sections 2.4 and 2.5 and Theorem 2.7.6.
  3. Weibel (1994), Chapters 2 and 3.
  4. Weibeil (1994), Lemma 3.3.1.
  5. Weibel (1994), section 4.5.
  6. Weibel (1994), Definition 2.1.1.
  7. Weibel (1994), Proposition 3.3.4.
  8. Weibel (1994), Proposition 3.3.10.
  9. Weibel (1994), Theorem 3.4.3.
  10. Weibel (1994), Corollary 3.4.5.
  11. Weibel (1994), Vists 3.4.6. Some minor corrections are in the errata.
  12. Weibel (1994), sections 10.4 and 10.7; Gelfand & Manin (2003), Chapter III.
  13. Sjödin (1980), Notation 14.
  14. Avramov (2010), section 10.2.


संदर्भ