ऑडियो कोडिंग प्रारूप: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
कुछ ऑडियो कोडिंग प्रारूपों को विस्तृत [[तकनीकी विनिर्देश|प्राविधिक विनिर्देश]] प्रलेख द्वारा प्रलेखित किया जाता है जिसे ऑडियो कोडिंग विनिर्देश के रूप में जाना जाता है। कुछ ऐसी विशिष्टताओं को [[मानकीकरण संगठन]] द्वारा [[तकनीकी मानक|प्राविधिक मानक]] के रूप में लिखा और अनुमोदित किया जाता है, और इस प्रकार ऑडियो कोडिंग मानक के रूप में जाना जाता है। मानक शब्द का प्रयोग कभी-कभी वास्तविक मानक के लिए भी किया जाता है। और वास्तविक मानकों के साथ-साथ औपचारिक मानकों के लिए भी किया जाता है। | कुछ ऑडियो कोडिंग प्रारूपों को विस्तृत [[तकनीकी विनिर्देश|प्राविधिक विनिर्देश]] प्रलेख द्वारा प्रलेखित किया जाता है जिसे ऑडियो कोडिंग विनिर्देश के रूप में जाना जाता है। कुछ ऐसी विशिष्टताओं को [[मानकीकरण संगठन]] द्वारा [[तकनीकी मानक|प्राविधिक मानक]] के रूप में लिखा और अनुमोदित किया जाता है, और इस प्रकार ऑडियो कोडिंग मानक के रूप में जाना जाता है। मानक शब्द का प्रयोग कभी-कभी वास्तविक मानक के लिए भी किया जाता है। और वास्तविक मानकों के साथ-साथ औपचारिक मानकों के लिए भी किया जाता है। | ||
विशेष ऑडियो कोडिंग प्रारूप में एन्कोडेड ऑडियो सामग्री सामान्य रूप से [[कंटेनर प्रारूप (डिजिटल)]] के भीतर समाहित होती है। इस प्रकार, उपयोगकर्ता के पास सामान्य रूप से कच्ची उन्नत ऑडियो कोडिंग फ़ाइल नहीं होती है, जबकि इसके अतिरिक्त m4a [[ऑडियो फ़ाइल स्वरूप]] होता है, जो [[एमपीईजी-1|एमपीईजी-4 भाग 14]] कंटेनर होता है जिसमें AAC-एन्कोडेड ऑडियो होता है। कंटेनर में शीर्षक और अन्य टैग जैसे [[ मेटा डेटा |मेटा डेटा]] भी होते हैं, और संभवतः तेजी से खोज के लिए अनुक्रमणिका भी होती है।<ref>{{Cite web | url=http://superuser.com/questions/357686/where-is-synchronization-information-stored-in-container-formats | title=Video - Where is synchronization information stored in container formats?}}</ref> उल्लेखनीय अपवाद | विशेष ऑडियो कोडिंग प्रारूप में एन्कोडेड ऑडियो सामग्री सामान्य रूप से [[कंटेनर प्रारूप (डिजिटल)]] के भीतर समाहित होती है। इस प्रकार, उपयोगकर्ता के पास सामान्य रूप से कच्ची उन्नत ऑडियो कोडिंग फ़ाइल नहीं होती है, जबकि इसके अतिरिक्त m4a [[ऑडियो फ़ाइल स्वरूप]] होता है, जो [[एमपीईजी-1|एमपीईजी-4 भाग 14]] कंटेनर होता है जिसमें AAC-एन्कोडेड ऑडियो होता है। कंटेनर में शीर्षक और अन्य टैग जैसे [[ मेटा डेटा |मेटा डेटा]] भी होते हैं, और संभवतः तेजी से खोज के लिए अनुक्रमणिका भी होती है।<ref>{{Cite web | url=http://superuser.com/questions/357686/where-is-synchronization-information-stored-in-container-formats | title=Video - Where is synchronization information stored in container formats?}}</ref> उल्लेखनीय अपवाद MP3 फाइलें हैं, जो कंटेनर प्रारूप के बिना अपरिष्कृत ऑडियो कोडिंग हैं। MP3 में शीर्षक और कलाकार जैसे मेटाडेटा टैग जोड़ने के लिए वास्तविक मानक, जैसे आईडी3, हैक (कंप्यूटर विज्ञान) हैं कंप्यूटर विज्ञान में जो MP3 में टैग जोड़कर कार्य करते हैं और फिर चंक को पहचानने के लिए MP3 प्लेयर पर भरोसा करते हैं विकृत ऑडियो कोडिंग के रूप में और इसलिए इसे छोड़ दें। ऑडियो के साथ वीडियो फ़ाइलों में, एन्कोडेड ऑडियो सामग्री को [[मल्टीमीडिया कंटेनर प्रारूप]] के अंदर वीडियो ([[वीडियो कोडिंग प्रारूप]] में) के साथ बंडल किया जाता है। | ||
ऑडियो कोडिंग प्रारूप प्रारूप को लागू करने वाले [[कोडेक]] द्वारा उपयोग किए जाने वाले सभी [[कलन विधि]] को निर्देशित नहीं करता है। मनोविश्लेषक मॉडल के अनुसार, हानिपूर्ण ऑडियो संपीड़न कैसे कार्य करता है इसका महत्वपूर्ण भाग डेटा को उन विधियों से हटाकर है जिन्हें मनुष्य सुन नहीं सकता है। एनकोडर के कार्यान्वयनकर्ता के पास पसंद की कुछ स्वतंत्रता होती है जिसमें डेटा को हटाना होता है (उनके मनोध्वनिक मॉडल के अनुसार)। | ऑडियो कोडिंग प्रारूप प्रारूप को लागू करने वाले [[कोडेक]] द्वारा उपयोग किए जाने वाले सभी [[कलन विधि]] को निर्देशित नहीं करता है। मनोविश्लेषक मॉडल के अनुसार, हानिपूर्ण ऑडियो संपीड़न कैसे कार्य करता है इसका महत्वपूर्ण भाग डेटा को उन विधियों से हटाकर है जिन्हें मनुष्य सुन नहीं सकता है। एनकोडर के कार्यान्वयनकर्ता के पास पसंद की कुछ स्वतंत्रता होती है जिसमें डेटा को हटाना होता है (उनके मनोध्वनिक मॉडल के अनुसार)। | ||
Line 10: | Line 10: | ||
[[दोषरहित संपीड़न]] ऑडियो कोडिंग प्रारूप ध्वनि का प्रतिनिधित्व करने के लिए आवश्यक कुल डेटा को कम कर देता है किन्तु इसके मूल, असम्पीडित रूप में डी-कोड किया जा सकता है। [[हानिपूर्ण संपीड़न]] ऑडियो कोडिंग प्रारूप अतिरिक्त रूप से संपीड़न के शीर्ष पर ध्वनि की [[ऑडियो बिट गहराई]] को कम करता है, जिसके परिणामस्वरूप अपरिवर्तनीय रूप से खोई हुई जानकारी की कीमत पर बहुत कम डेटा होता है। | [[दोषरहित संपीड़न]] ऑडियो कोडिंग प्रारूप ध्वनि का प्रतिनिधित्व करने के लिए आवश्यक कुल डेटा को कम कर देता है किन्तु इसके मूल, असम्पीडित रूप में डी-कोड किया जा सकता है। [[हानिपूर्ण संपीड़न]] ऑडियो कोडिंग प्रारूप अतिरिक्त रूप से संपीड़न के शीर्ष पर ध्वनि की [[ऑडियो बिट गहराई]] को कम करता है, जिसके परिणामस्वरूप अपरिवर्तनीय रूप से खोई हुई जानकारी की कीमत पर बहुत कम डेटा होता है। | ||
उपभोक्ता ऑडियो अक्सर हानिपूर्ण ऑडियो कोडेक का उपयोग करके संकुचित होता है क्योंकि छोटा आकार वितरण के लिए कहीं अधिक सुविधाजनक होता है। सबसे व्यापक रूप से उपयोग किए जाने वाले ऑडियो कोडिंग प्रारूप | उपभोक्ता ऑडियो अक्सर हानिपूर्ण ऑडियो कोडेक का उपयोग करके संकुचित होता है क्योंकि छोटा आकार वितरण के लिए कहीं अधिक सुविधाजनक होता है। सबसे व्यापक रूप से उपयोग किए जाने वाले ऑडियो कोडिंग प्रारूप MP3 और उन्नत ऑडियो कोडिंग (एएसी) हैं, जिनमें से दोनों संशोधित असतत कोसाइन ट्रांसफॉर्म (एमडीसीटी) और [[अवधारणात्मक कोडिंग]] एल्गोरिदम के आधार पर हानिकारक प्रारूप हैं। | ||
चूंकि बड़ी फ़ाइलों की कीमत पर दोषरहित ऑडियो कोडिंग प्रारूप जैसे फ्लैक और [[Apple Lossless|सेब दोषरहित]] कभी-कभी उपलब्ध होते हैं । | चूंकि बड़ी फ़ाइलों की कीमत पर दोषरहित ऑडियो कोडिंग प्रारूप जैसे फ्लैक और [[Apple Lossless|सेब दोषरहित]] कभी-कभी उपलब्ध होते हैं । | ||
असम्पीडित ऑडियो प्रारूप जैसे [[ पल्स कोड मॉडुलेशन |पल्स कोड मॉडुलेशन]] भी कभी-कभी उपयोग किए जाते हैं। पीसीएम [[कॉम्पैक्ट डिस्क डिजिटल ऑडियो]] (सीडीडीए) के लिए मानक प्रारूप था, | असम्पीडित ऑडियो प्रारूप जैसे [[ पल्स कोड मॉडुलेशन |पल्स कोड मॉडुलेशन]] भी कभी-कभी उपयोग किए जाते हैं। पीसीएम [[कॉम्पैक्ट डिस्क डिजिटल ऑडियो]] (सीडीडीए) के लिए मानक प्रारूप था, MP3 की प्रारंभिक के बाद हानिकारक संपीड़न अंततः मानक बनने से पहले था। | ||
== इतिहास == | == इतिहास == | ||
[[File:Placa-audioPC-925.jpg|right|thumb|सॉलिडाइन 922: पीसी, 1990 के लिए दुनिया का पहला व्यावसायिक ऑडियो बिट कम्प्रेशन [[ अच्छा पत्रक |अच्छा पत्रक]]]]1950 में, [[बेल लैब्स]] ने [[ अंतर पल्स-कोड मॉड्यूलेशन |अंतर पल्स-कोड मॉड्यूलेशन]] (DPCM) पर पेटेंट दायर किया।<ref name="DPCM">{{US patent reference|inventor=C. Chapin Cutler|title=Differential Quantization of Communication Signals|number=2605361|A-Datum=1950-06-29|issue-date=1952-07-29}}</ref> अनुकूली DPCM (ADPCM) को 1973 में बेल लैब्स में पी. कमिस्की, निकिल जयंत|निकिल एस. जयंत और जेम्स एल. फ्लानागन द्वारा पेश किया गया था।<ref>{{cite journal|doi=10.1002/j.1538-7305.1973.tb02007.x|url=https://ieeexplore.ieee.org/document/6770730|title=भाषण के विभेदक पीसीएम कोडिंग में अनुकूली परिमाणीकरण|year=1973|last1=Cummiskey|first1=P.|last2=Jayant|first2=N. S.|last3=Flanagan|first3=J. L.|journal=Bell System Technical Journal|volume=52|issue=7|pages=1105–1118}}</ref><ref>{{cite journal |last1=Cummiskey |first1=P. |last2=Jayant |first2=Nikil S. |last3=Flanagan |first3=J. L. |title=भाषण के अंतर पीसीएम कोडिंग में अनुकूली परिमाणीकरण|journal=The Bell System Technical Journal |date=1973 |volume=52 |issue=7 |pages=1105–1118 |doi=10.1002/j.1538-7305.1973.tb02007.x |issn=0005-8580}}</ref> | [[File:Placa-audioPC-925.jpg|right|thumb|सॉलिडाइन 922: पीसी, 1990 के लिए दुनिया का पहला व्यावसायिक ऑडियो बिट कम्प्रेशन [[ अच्छा पत्रक |अच्छा पत्रक]]]]1950 में, [[बेल लैब्स]] ने [[ अंतर पल्स-कोड मॉड्यूलेशन |अंतर पल्स-कोड मॉड्यूलेशन]] (DPCM) पर पेटेंट दायर किया।<ref name="DPCM">{{US patent reference|inventor=C. Chapin Cutler|title=Differential Quantization of Communication Signals|number=2605361|A-Datum=1950-06-29|issue-date=1952-07-29}}</ref> अनुकूली DPCM (ADPCM) को 1973 में बेल लैब्स में पी. कमिस्की, निकिल जयंत|निकिल एस. जयंत और जेम्स एल. फ्लानागन द्वारा पेश किया गया था।<ref>{{cite journal|doi=10.1002/j.1538-7305.1973.tb02007.x|url=https://ieeexplore.ieee.org/document/6770730|title=भाषण के विभेदक पीसीएम कोडिंग में अनुकूली परिमाणीकरण|year=1973|last1=Cummiskey|first1=P.|last2=Jayant|first2=N. S.|last3=Flanagan|first3=J. L.|journal=Bell System Technical Journal|volume=52|issue=7|pages=1105–1118}}</ref><ref>{{cite journal |last1=Cummiskey |first1=P. |last2=Jayant |first2=Nikil S. |last3=Flanagan |first3=J. L. |title=भाषण के अंतर पीसीएम कोडिंग में अनुकूली परिमाणीकरण|journal=The Bell System Technical Journal |date=1973 |volume=52 |issue=7 |pages=1105–1118 |doi=10.1002/j.1538-7305.1973.tb02007.x |issn=0005-8580}}</ref> | ||
[[रैखिक भविष्य कहनेवाला कोडिंग]] (LPC) के साथ अवधारणात्मक कोडिंग का उपयोग पहली बार वाक् कोडिंग संपीड़न के लिए किया गया था।<ref name="Schroeder2014">{{cite book |last1=Schroeder |first=Manfred R. |title=Acoustics, Information, and Communication: Memorial Volume in Honor of Manfred R. Schroeder |date=2014 |publisher=Springer |isbn=9783319056609 |chapter=Bell Laboratories |page=388 |chapter-url=https://books.google.com/books?id=d9IkBAAAQBAJ&pg=PA388}}</ref> एलपीसी के लिए प्रारंभिक अवधारणाएं 1966 में [[बुंददा इटाकुरा]] ([[नागोया विश्वविद्यालय]]) और शुजो सैटो ([[निप्पॉन टेलीग्राफ और टेलीफोन]]) के कार्य से जुड़ी हैं।<ref>{{cite journal |last1=Gray |first1=Robert M. |title=A History of Realtime Digital Speech on Packet Networks: Part II of Linear Predictive Coding and the Internet Protocol |journal=Found. Trends Signal Process. |date=2010 |volume=3 |issue=4 |pages=203–303 |doi=10.1561/2000000036 |url=https://ee.stanford.edu/~gray/lpcip.pdf |issn=1932-8346|doi-access=free }}</ref> 1970 के दशक के दौरान, बेल लैब्स में बिष्णु एस. अटल और मैनफ़्रेड आर. श्रोएडर ने LPC का रूप विकसित किया, जिसे [[ अनुकूली भविष्य कहनेवाला कोडिंग |अनुकूली भविष्य कहनेवाला कोडिंग]] (APC) कहा जाता है, जो अवधारणात्मक कोडिंग एल्गोरिथम है, जो मानव कान के मास्किंग गुणों का शोषण करता है, 1980 के दशक की प्रारंभिक में [[कोड-उत्साहित रैखिक भविष्यवाणी]] (सीईएलपी) एल्गोरिदम जिसने अपने समय के लिए महत्वपूर्ण संपीड़न अनुपात हासिल किया।<ref name="Schroeder2014"/>अवधारणात्मक कोडिंग का उपयोग | [[रैखिक भविष्य कहनेवाला कोडिंग]] (LPC) के साथ अवधारणात्मक कोडिंग का उपयोग पहली बार वाक् कोडिंग संपीड़न के लिए किया गया था।<ref name="Schroeder2014">{{cite book |last1=Schroeder |first=Manfred R. |title=Acoustics, Information, and Communication: Memorial Volume in Honor of Manfred R. Schroeder |date=2014 |publisher=Springer |isbn=9783319056609 |chapter=Bell Laboratories |page=388 |chapter-url=https://books.google.com/books?id=d9IkBAAAQBAJ&pg=PA388}}</ref> एलपीसी के लिए प्रारंभिक अवधारणाएं 1966 में [[बुंददा इटाकुरा]] ([[नागोया विश्वविद्यालय]]) और शुजो सैटो ([[निप्पॉन टेलीग्राफ और टेलीफोन]]) के कार्य से जुड़ी हैं।<ref>{{cite journal |last1=Gray |first1=Robert M. |title=A History of Realtime Digital Speech on Packet Networks: Part II of Linear Predictive Coding and the Internet Protocol |journal=Found. Trends Signal Process. |date=2010 |volume=3 |issue=4 |pages=203–303 |doi=10.1561/2000000036 |url=https://ee.stanford.edu/~gray/lpcip.pdf |issn=1932-8346|doi-access=free }}</ref> 1970 के दशक के दौरान, बेल लैब्स में बिष्णु एस. अटल और मैनफ़्रेड आर. श्रोएडर ने LPC का रूप विकसित किया, जिसे [[ अनुकूली भविष्य कहनेवाला कोडिंग |अनुकूली भविष्य कहनेवाला कोडिंग]] (APC) कहा जाता है, जो अवधारणात्मक कोडिंग एल्गोरिथम है, जो मानव कान के मास्किंग गुणों का शोषण करता है, 1980 के दशक की प्रारंभिक में [[कोड-उत्साहित रैखिक भविष्यवाणी]] (सीईएलपी) एल्गोरिदम जिसने अपने समय के लिए महत्वपूर्ण संपीड़न अनुपात हासिल किया।<ref name="Schroeder2014"/>अवधारणात्मक कोडिंग का उपयोग MP3 जैसे आधुनिक ऑडियो संपीड़न प्रारूपों द्वारा किया जाता है<ref name="Schroeder2014"/>और [[उन्नत ऑडियो कोडेक]]। | ||
1974 में [[नासिर अहमद (इंजीनियर)]], टी. नटराजन और के.आर. राव द्वारा विकसित [[असतत कोज्या परिवर्तन]] (DCT),<ref name="DCT">{{cite journal |author1=Nasir Ahmed |author1-link=N. Ahmed |author2=T. Natarajan |author3=Kamisetty Ramamohan Rao |journal=IEEE Transactions on Computers|title=असतत कोसाइन रूपांतरण|volume=C-23|issue=1|pages=90–93|date=January 1974 |doi=10.1109/T-C.1974.223784 |s2cid=149806273 |url=https://www.ic.tu-berlin.de/fileadmin/fg121/Source-Coding_WS12/selected-readings/Ahmed_et_al.__1974.pdf}}</ref> | 1974 में [[नासिर अहमद (इंजीनियर)]], टी. नटराजन और के.आर. राव द्वारा विकसित [[असतत कोज्या परिवर्तन]] (DCT),<ref name="DCT">{{cite journal |author1=Nasir Ahmed |author1-link=N. Ahmed |author2=T. Natarajan |author3=Kamisetty Ramamohan Rao |journal=IEEE Transactions on Computers|title=असतत कोसाइन रूपांतरण|volume=C-23|issue=1|pages=90–93|date=January 1974 |doi=10.1109/T-C.1974.223784 |s2cid=149806273 |url=https://www.ic.tu-berlin.de/fileadmin/fg121/Source-Coding_WS12/selected-readings/Ahmed_et_al.__1974.pdf}}</ref> MP3 जैसे आधुनिक ऑडियो संपीड़न प्रारूपों द्वारा उपयोग किए जाने वाले संशोधित असतत कोसाइन ट्रांसफॉर्म (एमडीसीटी) के लिए आधार प्रदान किया<ref name="Guckert">{{cite web |last1=Guckert |first1=John |title=The Use of FFT and MDCT in MP3 Audio Compression |url=http://www.math.utah.edu/~gustafso/s2012/2270/web-projects/Guckert-audio-compression-svd-mdct-MP3.pdf |website=[[University of Utah]] |date=Spring 2012 |access-date=14 July 2019}}</ref> और एएसी। MDCT का प्रस्ताव 1987 में J. P. प्रिंसेन, A. W. जॉनसन और A. B. ब्राडली द्वारा किया गया था,<ref>{{cite book|doi=10.1109/ICASSP.1987.1169405|chapter-url=https://ieeexplore.ieee.org/document/1169405|chapter=Subband/Transform coding using filter bank designs based on time domain aliasing cancellation|title=ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing|year=1987|last1=Princen|first1=J.|last2=Johnson|first2=A.|last3=Bradley|first3=A.|volume=12|pages=2161–2164|s2cid=58446992}}</ref> 1986 में प्रिंसेन और ब्रैडली द्वारा पहले के कार्य के बाद।<ref>{{cite journal|doi=10.1109/TASSP.1986.1164954|url=https://ieeexplore.ieee.org/document/1164954|title=Analysis/Synthesis filter bank design based on time domain aliasing cancellation|year=1986|last1=Princen|first1=J.|last2=Bradley|first2=A.|journal=IEEE Transactions on Acoustics, Speech, and Signal Processing|volume=34|issue=5|pages=1153–1161}}</ref> एमडीसीटी का उपयोग आधुनिक ऑडियो संपीड़न प्रारूपों जैसे [[डॉल्बी डिजिटल]],<ref name="Luo">{{cite book |last1=Luo |first1=Fa-Long |title=Mobile Multimedia Broadcasting Standards: Technology and Practice |date=2008 |publisher=[[Springer Science & Business Media]] |isbn=9780387782638 |page=590 |url=https://books.google.com/books?id=l6PovWat8SMC&pg=PA590}}</ref><ref>{{cite journal |last1=Britanak |first1=V. |title=On Properties, Relations, and Simplified Implementation of Filter Banks in the Dolby Digital (Plus) AC-3 Audio Coding Standards |journal=IEEE Transactions on Audio, Speech, and Language Processing |date=2011 |volume=19 |issue=5 |pages=1231–1241 |doi=10.1109/TASL.2010.2087755|s2cid=897622 }}</ref> बिका हुआ,<ref name="Guckert">{{cite web |last1=Guckert |first1=John |title=The Use of FFT and MDCT in MP3 Audio Compression |url=http://www.math.utah.edu/~gustafso/s2012/2270/web-projects/Guckert-audio-compression-svd-mdct-MP3.pdf |website=[[University of Utah]] |date=Spring 2012 |access-date=14 July 2019}}</ref> और उन्नत ऑडियो कोडिंग (एएसी)।<ref name=brandenburg>{{cite web|url=http://graphics.ethz.ch/teaching/mmcom12/slides/mp3_and_aac_brandenburg.pdf|title=MP3 and AAC Explained|last=Brandenburg|first=Karlheinz|year=1999|url-status=live|archive-url=https://web.archive.org/web/20170213191747/https://graphics.ethz.ch/teaching/mmcom12/slides/mp3_and_aac_brandenburg.pdf|archive-date=2017-02-13}}</ref> | ||
== हानिपूर्ण स्वरूपों की सूची == | == हानिपूर्ण स्वरूपों की सूची == | ||
Revision as of 01:55, 18 May 2023
ऑडियो कोडिंग प्रारूप[1] (या कभी-कभी ऑडियो संपीड़न प्रारूप) डिजिटल ऑडियो (जैसे डिजिटल टेलीविजन, डिजिटल रेडियो और ऑडियो और वीडियो फ़ाइलों में) के भंडारण या प्रसारण के लिए सामग्री प्रारूप है। ऑडियो कोडिंग स्वरूपों के उदाहरणों में MP3, उन्नत ऑडियो कोडिंग, वॉर्बिस , फ्लैक, और ओपुस (ऑडियो प्रारूप) सम्मलित हैं। विशिष्ट सॉफ़्टवेयर या हार्डवेयर कार्यान्वयन जो डेटा संपीड़न ऑडियो और विशिष्ट ऑडियो कोडिंग प्रारूप के लिए सक्षम है, उसे 'ऑडियो कोडेक' कहा जाता है; ऑडियो कोडेक का उदाहरण लेम है, जो कई अलग-अलग कोडेक में से है जो सॉफ्टवेयर में MP3 ऑडियो कोडिंग प्रारूप में ऑडियो को एन्कोडिंग और डिकोडिंग लागू करता है।
कुछ ऑडियो कोडिंग प्रारूपों को विस्तृत प्राविधिक विनिर्देश प्रलेख द्वारा प्रलेखित किया जाता है जिसे ऑडियो कोडिंग विनिर्देश के रूप में जाना जाता है। कुछ ऐसी विशिष्टताओं को मानकीकरण संगठन द्वारा प्राविधिक मानक के रूप में लिखा और अनुमोदित किया जाता है, और इस प्रकार ऑडियो कोडिंग मानक के रूप में जाना जाता है। मानक शब्द का प्रयोग कभी-कभी वास्तविक मानक के लिए भी किया जाता है। और वास्तविक मानकों के साथ-साथ औपचारिक मानकों के लिए भी किया जाता है।
विशेष ऑडियो कोडिंग प्रारूप में एन्कोडेड ऑडियो सामग्री सामान्य रूप से कंटेनर प्रारूप (डिजिटल) के भीतर समाहित होती है। इस प्रकार, उपयोगकर्ता के पास सामान्य रूप से कच्ची उन्नत ऑडियो कोडिंग फ़ाइल नहीं होती है, जबकि इसके अतिरिक्त m4a ऑडियो फ़ाइल स्वरूप होता है, जो एमपीईजी-4 भाग 14 कंटेनर होता है जिसमें AAC-एन्कोडेड ऑडियो होता है। कंटेनर में शीर्षक और अन्य टैग जैसे मेटा डेटा भी होते हैं, और संभवतः तेजी से खोज के लिए अनुक्रमणिका भी होती है।[2] उल्लेखनीय अपवाद MP3 फाइलें हैं, जो कंटेनर प्रारूप के बिना अपरिष्कृत ऑडियो कोडिंग हैं। MP3 में शीर्षक और कलाकार जैसे मेटाडेटा टैग जोड़ने के लिए वास्तविक मानक, जैसे आईडी3, हैक (कंप्यूटर विज्ञान) हैं कंप्यूटर विज्ञान में जो MP3 में टैग जोड़कर कार्य करते हैं और फिर चंक को पहचानने के लिए MP3 प्लेयर पर भरोसा करते हैं विकृत ऑडियो कोडिंग के रूप में और इसलिए इसे छोड़ दें। ऑडियो के साथ वीडियो फ़ाइलों में, एन्कोडेड ऑडियो सामग्री को मल्टीमीडिया कंटेनर प्रारूप के अंदर वीडियो (वीडियो कोडिंग प्रारूप में) के साथ बंडल किया जाता है।
ऑडियो कोडिंग प्रारूप प्रारूप को लागू करने वाले कोडेक द्वारा उपयोग किए जाने वाले सभी कलन विधि को निर्देशित नहीं करता है। मनोविश्लेषक मॉडल के अनुसार, हानिपूर्ण ऑडियो संपीड़न कैसे कार्य करता है इसका महत्वपूर्ण भाग डेटा को उन विधियों से हटाकर है जिन्हें मनुष्य सुन नहीं सकता है। एनकोडर के कार्यान्वयनकर्ता के पास पसंद की कुछ स्वतंत्रता होती है जिसमें डेटा को हटाना होता है (उनके मनोध्वनिक मॉडल के अनुसार)।
दोषरहित, हानिपूर्ण और असम्पीडित ऑडियो कोडिंग प्रारूप
दोषरहित संपीड़न ऑडियो कोडिंग प्रारूप ध्वनि का प्रतिनिधित्व करने के लिए आवश्यक कुल डेटा को कम कर देता है किन्तु इसके मूल, असम्पीडित रूप में डी-कोड किया जा सकता है। हानिपूर्ण संपीड़न ऑडियो कोडिंग प्रारूप अतिरिक्त रूप से संपीड़न के शीर्ष पर ध्वनि की ऑडियो बिट गहराई को कम करता है, जिसके परिणामस्वरूप अपरिवर्तनीय रूप से खोई हुई जानकारी की कीमत पर बहुत कम डेटा होता है।
उपभोक्ता ऑडियो अक्सर हानिपूर्ण ऑडियो कोडेक का उपयोग करके संकुचित होता है क्योंकि छोटा आकार वितरण के लिए कहीं अधिक सुविधाजनक होता है। सबसे व्यापक रूप से उपयोग किए जाने वाले ऑडियो कोडिंग प्रारूप MP3 और उन्नत ऑडियो कोडिंग (एएसी) हैं, जिनमें से दोनों संशोधित असतत कोसाइन ट्रांसफॉर्म (एमडीसीटी) और अवधारणात्मक कोडिंग एल्गोरिदम के आधार पर हानिकारक प्रारूप हैं।
चूंकि बड़ी फ़ाइलों की कीमत पर दोषरहित ऑडियो कोडिंग प्रारूप जैसे फ्लैक और सेब दोषरहित कभी-कभी उपलब्ध होते हैं ।
असम्पीडित ऑडियो प्रारूप जैसे पल्स कोड मॉडुलेशन भी कभी-कभी उपयोग किए जाते हैं। पीसीएम कॉम्पैक्ट डिस्क डिजिटल ऑडियो (सीडीडीए) के लिए मानक प्रारूप था, MP3 की प्रारंभिक के बाद हानिकारक संपीड़न अंततः मानक बनने से पहले था।
इतिहास
1950 में, बेल लैब्स ने अंतर पल्स-कोड मॉड्यूलेशन (DPCM) पर पेटेंट दायर किया।[3] अनुकूली DPCM (ADPCM) को 1973 में बेल लैब्स में पी. कमिस्की, निकिल जयंत|निकिल एस. जयंत और जेम्स एल. फ्लानागन द्वारा पेश किया गया था।[4][5]
रैखिक भविष्य कहनेवाला कोडिंग (LPC) के साथ अवधारणात्मक कोडिंग का उपयोग पहली बार वाक् कोडिंग संपीड़न के लिए किया गया था।[6] एलपीसी के लिए प्रारंभिक अवधारणाएं 1966 में बुंददा इटाकुरा (नागोया विश्वविद्यालय) और शुजो सैटो (निप्पॉन टेलीग्राफ और टेलीफोन) के कार्य से जुड़ी हैं।[7] 1970 के दशक के दौरान, बेल लैब्स में बिष्णु एस. अटल और मैनफ़्रेड आर. श्रोएडर ने LPC का रूप विकसित किया, जिसे अनुकूली भविष्य कहनेवाला कोडिंग (APC) कहा जाता है, जो अवधारणात्मक कोडिंग एल्गोरिथम है, जो मानव कान के मास्किंग गुणों का शोषण करता है, 1980 के दशक की प्रारंभिक में कोड-उत्साहित रैखिक भविष्यवाणी (सीईएलपी) एल्गोरिदम जिसने अपने समय के लिए महत्वपूर्ण संपीड़न अनुपात हासिल किया।[6]अवधारणात्मक कोडिंग का उपयोग MP3 जैसे आधुनिक ऑडियो संपीड़न प्रारूपों द्वारा किया जाता है[6]और उन्नत ऑडियो कोडेक।
1974 में नासिर अहमद (इंजीनियर), टी. नटराजन और के.आर. राव द्वारा विकसित असतत कोज्या परिवर्तन (DCT),[8] MP3 जैसे आधुनिक ऑडियो संपीड़न प्रारूपों द्वारा उपयोग किए जाने वाले संशोधित असतत कोसाइन ट्रांसफॉर्म (एमडीसीटी) के लिए आधार प्रदान किया[9] और एएसी। MDCT का प्रस्ताव 1987 में J. P. प्रिंसेन, A. W. जॉनसन और A. B. ब्राडली द्वारा किया गया था,[10] 1986 में प्रिंसेन और ब्रैडली द्वारा पहले के कार्य के बाद।[11] एमडीसीटी का उपयोग आधुनिक ऑडियो संपीड़न प्रारूपों जैसे डॉल्बी डिजिटल,[12][13] बिका हुआ,[9] और उन्नत ऑडियो कोडिंग (एएसी)।[14]
हानिपूर्ण स्वरूपों की सूची
सामान्य
Basic compression algorithm | ऑडियो coding standard | Abbreviation | Introduction | Market share (2019)[15] | Ref |
---|---|---|---|---|---|
Modified discrete cosine transform (MDCT) | Dolby Digital (AC-3) | AC3 | 1991 | 58% | [12][16] |
Adaptive Transform Acoustic Coding | ATRAC | 1992 | Unknown | [12] | |
एमपीईजी Layer III | MP3 | 1993 | 49% | [9][17] | |
Advanced ऑडियो Coding (एमपीईजी-2 / एमपीईजी-4) | AAC | 1997 | 88% | [14][12] | |
Windows Media Audio | WMA | 1999 | Unknown | [12] | |
Ogg वॉर्बिस | Ogg | 2000 | 7% | [18][12] | |
Constrained Energy Lapped Transform | CELT | 2011 | — | [19] | |
Opus | Opus | 2012 | 8% | [20] | |
LDAC | LDAC | 2015 | Unknown | [21][22] | |
Adaptive differential pulse-code modulation (ADPCM) | aptX / aptX-HD | aptX | 1989 | Unknown | [23] |
Digital Theater Systems | DTS | 1990 | 14% | [24][25] | |
Master Quality Authenticated | MQA | 2014 | Unknown | ||
Sub-band coding (SBC) | एमपीईजी-1 ऑडियो Layer II | MP2 | 1993 | Unknown | |
Musepack | MPC | 1997 |
भाषण
- लीनियर प्रेडिक्टिव कोडिंग (LPC)
- अनुकूली भविष्य कहनेवाला कोडिंग (APC)
- कोड-उत्तेजित रैखिक भविष्यवाणी (सीईएलपी)
- बीजगणितीय कोड-उत्तेजित रैखिक भविष्यवाणी (एसीईएलपी)
- रिलैक्स्ड बीजगणितीय कोड-उत्साहित रैखिक भविष्यवाणीRCELP)
- कम-विलंब CELP (LD-CELP)
- अनुकूली मल्टी-रेट ऑडियो कोडेक | अडैप्टिव मल्टी-रेट (GSM और 3GPP में प्रयुक्त)
- कोडेक2 (पेटेंट प्रतिबंधों की कमी के लिए विख्यात)
- स्पीक्स (पेटेंट प्रतिबंधों की कमी के लिए विख्यात)
- संशोधित असतत कोज्या परिवर्तन (एमडीसीटी)
- एएसी-एलडी
- विवश ऊर्जा लैप्ड रूपांतरण (सीईएलटी)
- कार्य (कोडेक) (ज्यादातर रीयल-टाइम अनुप्रयोगों के लिए)
दोषरहित स्वरूपों की सूची
- Apple दोषरहित (ALAC - Apple दोषरहित ऑडियो कोडेक)
- अनुकूली परिवर्तन ध्वनिक कोडिंग (एटीआरएसी)
- ऑडियो दोषरहित कोडिंग (एमपीईजी-4 ALS के रूप में भी जाना जाता है)
- सुपर ऑडियो सीडी#डीएसटी (डीएसटी)
- डॉल्बी ट्रूएचडी
- डीटीएस-एचडी मास्टर ऑडियो
- मुफ्त दोषरहित ऑडियो कोडेक (एफ़एलएसी)
- असतत कोज्या परिवर्तन (LDCT)
- मेरिडियन दोषरहित पैकिंग (एमएलपी)
- बंदर का ऑडियो (बंदर का ऑडियो एपीई)
- एमपीईजी-4 SLS (HD-AAC के रूप में भी जाना जाता है)
- ऑप्टिमफ्रॉग
- मूल ध्वनि गुणवत्ता (OSQ)
- RealPlayer (Realऑडियो Lossless)
- छोटा करें (फ़ाइल स्वरूप) (SHN)
- टीटीए (कोडेक) (ट्रू ऑडियो लॉसलेस)
- WavPack (WavPack दोषरहित)
- विंडोज मीडिया ऑडियो 9 दोषरहित (विंडोज मीडिया दोषरहित)
यह भी देखें
- ऑडियो कोडिंग स्वरूपों की तुलना
- डेटा संपीड़न # ऑडियो
- ऑडियो फ़ाइल स्वरूप
- ऑडियो संपीड़न प्रारूपों की सूची
संदर्भ
- ↑ The term "audio coding" can be seen in e.g. the name Advanced Audio Coding, and is analogous to the term video coding
- ↑ "Video - Where is synchronization information stored in container formats?".
- ↑ US patent 2605361, C. Chapin Cutler, "Differential Quantization of Communication Signals", issued 1952-07-29
- ↑ Cummiskey, P.; Jayant, N. S.; Flanagan, J. L. (1973). "भाषण के विभेदक पीसीएम कोडिंग में अनुकूली परिमाणीकरण". Bell System Technical Journal. 52 (7): 1105–1118. doi:10.1002/j.1538-7305.1973.tb02007.x.
- ↑ Cummiskey, P.; Jayant, Nikil S.; Flanagan, J. L. (1973). "भाषण के अंतर पीसीएम कोडिंग में अनुकूली परिमाणीकरण". The Bell System Technical Journal. 52 (7): 1105–1118. doi:10.1002/j.1538-7305.1973.tb02007.x. ISSN 0005-8580.
- ↑ 6.0 6.1 6.2 Schroeder, Manfred R. (2014). "Bell Laboratories". Acoustics, Information, and Communication: Memorial Volume in Honor of Manfred R. Schroeder. Springer. p. 388. ISBN 9783319056609.
- ↑ Gray, Robert M. (2010). "A History of Realtime Digital Speech on Packet Networks: Part II of Linear Predictive Coding and the Internet Protocol" (PDF). Found. Trends Signal Process. 3 (4): 203–303. doi:10.1561/2000000036. ISSN 1932-8346.
- ↑ Nasir Ahmed; T. Natarajan; Kamisetty Ramamohan Rao (January 1974). "असतत कोसाइन रूपांतरण" (PDF). IEEE Transactions on Computers. C-23 (1): 90–93. doi:10.1109/T-C.1974.223784. S2CID 149806273.
- ↑ 9.0 9.1 9.2 Guckert, John (Spring 2012). "The Use of FFT and MDCT in MP3 Audio Compression" (PDF). University of Utah. Retrieved 14 July 2019.
- ↑ Princen, J.; Johnson, A.; Bradley, A. (1987). "Subband/Transform coding using filter bank designs based on time domain aliasing cancellation". ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing. Vol. 12. pp. 2161–2164. doi:10.1109/ICASSP.1987.1169405. S2CID 58446992.
- ↑ Princen, J.; Bradley, A. (1986). "Analysis/Synthesis filter bank design based on time domain aliasing cancellation". IEEE Transactions on Acoustics, Speech, and Signal Processing. 34 (5): 1153–1161. doi:10.1109/TASSP.1986.1164954.
- ↑ 12.0 12.1 12.2 12.3 12.4 12.5 Luo, Fa-Long (2008). Mobile Multimedia Broadcasting Standards: Technology and Practice. Springer Science & Business Media. p. 590. ISBN 9780387782638.
- ↑ Britanak, V. (2011). "On Properties, Relations, and Simplified Implementation of Filter Banks in the Dolby Digital (Plus) AC-3 Audio Coding Standards". IEEE Transactions on Audio, Speech, and Language Processing. 19 (5): 1231–1241. doi:10.1109/TASL.2010.2087755. S2CID 897622.
- ↑ 14.0 14.1 Brandenburg, Karlheinz (1999). "MP3 and AAC Explained" (PDF). Archived (PDF) from the original on 2017-02-13.
- ↑ "Video Developer Report 2019" (PDF). Bitmovin. 2019. Retrieved 5 November 2019.
- ↑ Britanak, V. (2011). "On Properties, Relations, and Simplified Implementation of Filter Banks in the Dolby Digital (Plus) AC-3 Audio Coding Standards". IEEE Transactions on Audio, Speech, and Language Processing. 19 (5): 1231–1241. doi:10.1109/TASL.2010.2087755. S2CID 897622.
- ↑ Stanković, Radomir S.; Astola, Jaakko T. (2012). "Reminiscences of the Early Work in DCT: Interview with K.R. Rao" (PDF). Reprints from the Early Days of Information Sciences. 60. Retrieved 13 October 2019.
- ↑ Xiph.Org Foundation (2009-06-02). "Vorbis I specification - 1.1.2 Classification". Xiph.Org Foundation. Retrieved 2009-09-22.
- ↑ Terriberry, Timothy B. Presentation of the CELT codec. Presentation (PDF).
- ↑ Valin, Jean-Marc; Maxwell, Gregory; Terriberry, Timothy B.; Vos, Koen (October 2013). High-Quality, Low-Delay Music Coding in the Opus Codec. 135th AES Convention. Audio Engineering Society. arXiv:1602.04845.
- ↑ Darko, John H. (2017-03-29). "The inconvenient truth about Bluetooth audio". DAR__KO. Archived from the original on 2018-01-14. Retrieved 2018-01-13.
- ↑ Ford, Jez (2015-08-24). "What is Sony LDAC, and how does it do it?". AVHub. Retrieved 2018-01-13.
- ↑ Ford, Jez (2016-11-22). "aptX HD - lossless or lossy?". AVHub. Retrieved 2018-01-13.
- ↑ "Digital Theater Systems Audio Formats". Library of Congress. 27 December 2011. Retrieved 10 November 2019.
- ↑ Spanias, Andreas; Painter, Ted; Atti, Venkatraman (2006). Audio Signal Processing and Coding. John Wiley & Sons. p. 338. ISBN 9780470041963.