हार्मोनिक संयुग्म: Difference between revisions
No edit summary |
No edit summary |
||
Line 13: | Line 13: | ||
== उदाहरण == | == उदाहरण == | ||
उदाहरण के लिए निम्न फलन पर विचार करें:<math display="block">u(x,y) = e^x \sin y. </math>चूंकि,<math display="block">{\partial u \over \partial x } = e^x \sin y, \quad {\partial^2 u \over \partial x^2} = e^x \sin y</math>और<math display="block">{\partial u \over \partial y} = e^x \cos y, \quad {\partial^2 u \over \partial y^2} = - e^x \sin y,</math>यह निम्न फलन को संतुष्ट करता है:<math display="block"> \Delta u = \nabla^2 u = 0</math>जहाँ <math>\Delta</math> [[लाप्लास ऑपरेटर|लाप्लास संक्रियक]] है और इस प्रकार यह हार्मोनिक फलन है। माना कि हमारे पास एक <math>v(x,y)</math> ऐसा बिन्दु है जो कि कॉची-रीमैन समीकरण को संतुष्ट करता हैं:<math display="block">{\partial u \over \partial x} = {\partial v \over \partial y} = e^x \sin y</math>और<math display="block">{\partial u \over \partial y} = -{\partial v \over \partial x} = e^x \cos y.</math> | उदाहरण के लिए निम्न फलन पर विचार करें:<math display="block">u(x,y) = e^x \sin y. </math>चूंकि,<math display="block">{\partial u \over \partial x } = e^x \sin y, \quad {\partial^2 u \over \partial x^2} = e^x \sin y</math>और<math display="block">{\partial u \over \partial y} = e^x \cos y, \quad {\partial^2 u \over \partial y^2} = - e^x \sin y,</math>यह निम्न फलन को संतुष्ट करता है:<math display="block"> \Delta u = \nabla^2 u = 0</math>जहाँ <math>\Delta</math> [[लाप्लास ऑपरेटर|लाप्लास संक्रियक]] है और इस प्रकार यह हार्मोनिक फलन है। माना कि हमारे पास एक <math>v(x,y)</math> ऐसा बिन्दु है जो कि कॉची-रीमैन समीकरण को संतुष्ट करता हैं:<math display="block">{\partial u \over \partial x} = {\partial v \over \partial y} = e^x \sin y</math>और<math display="block">{\partial u \over \partial y} = -{\partial v \over \partial x} = e^x \cos y.</math>यह निम्न को संतुष्ट करता है:<math display="block">{\partial v \over \partial y} = e^x \sin y</math>और<math display="block">{\partial v \over \partial x} = -e^x \cos y</math>जिसको हल करने पर निम्नलिखित समीकरण प्राप्त होता है:<math display="block"> v = -e^x \cos y + C.</math>ध्यान दें कि यदि <math>u</math>, <math> v</math> से संबंधित फलनों को आपस में रूपांतरित दिया जाता है तो फलन हार्मोनिक संयुग्म नहीं होते है। क्योंकि कॉची-रीमैन समीकरणों में ऋण चिह्न फलन को असममित बनाते है। | ||
Revision as of 11:48, 23 May 2023
गणित में, विवृत समुच्चय पर परिभाषित वास्तविक संख्या फलन और को हार्मोनिक संयुग्मी फलन () कहा जाता है। यदि और केवल यदि वे क्रमशः समिश्र चर के होलोमॉर्फिक फलन के वास्तविक और काल्पनिक समुच्चय हैं। अर्थात , से संयुग्मी है यदि पर हार्मोनिक फलन है। परिभाषा के पहले परिणाम के रूप में और दोनों पर हार्मोनिक वास्तविक संख्या फलन हैं। इसके अतिरिक्त, यदि का कोई संयुग्मी सम्मिलित है, तो यह एक योज्य स्थिरांक तक अद्वितीय होता है। साथ ही , से संयुग्मी है यदि और केवल यदि , से संयुग्मी है।
विवरण
समतुल्य रूप से , में संयुग्मी है यदि और केवल यदि और , कॉची-रीमैन समीकरणों को संतुष्ट करते हैं। इसके बाद की समकक्ष परिभाषा के परिणाम के रूप में यदि , पर कोई हार्मोनिक फलन है और वह के लिए संयुग्मित है, तब कॉची-रीमैन समीकरण मे और समिश्र दूसरे क्रम के व्युत्पन्न की समरूपता होती है। इसलिए हार्मोनिक फलन संयुग्मित हार्मोनिक फलन को स्वीकृत करता है यदि और केवल यदि होलोमोर्फिक फलन में अभाज्य है। में जिस अवस्था में के संयुग्मी फलन के रूप मे होता है। इसलिए कोई भी हार्मोनिक फलन सदैव संयुग्मी फलन को स्वीकृत करता है। क्योकि इसका डोमेन एक फलन से संबद्ध होता है और किसी भी स्थिति में यह अपने डोमेन के किसी भी बिंदु पर स्थानीय रूप से संयुग्मी फलन को स्वीकृत करता है।
इसके हार्मोनिक संयुग्म (उदाहरण के लिए से संयुग्म की अनिश्चितता को स्थिर करने के लिए) में का हार्मोनिक फलन है। यह अनुप्रयोगों में अपेक्षाकृत अच्छी तरह से (अनिवार्य रूप से) हिल्बर्ट रूपांतरण के रूप में जाना जाता है। यह एकल समाकल संक्रियकों के संबंध में गणितीय विश्लेषण का एकआधारिक उदाहरण भी है। संयुग्म हार्मोनिक फलन और उनके बीच के रूपांतरण बैकलंड रूपांतरण (दो पीडीई और उनके समाधान से संबंधित रूपांतरण) के सबसे सरल उदाहरणों में से एक हैं। इस स्थिति में रैखिक और अधिक समिश्र रूपांतरण सॉलिटन और समाकल प्रणाली में रुचि रखते हैं।
ज्यामितीय रूप से और लंबकोणीय प्रक्षेप के रूप में संबंधित हैं। अंतर्निहित होलोमोर्फिक फलन के शून्य से दूर वे समोच्य रेखाएँ जिन पर और स्थिर हैं, समकोण पर परस्पर प्रतिच्छेदित करते हैं। इस संबंध में समिश्र क्षमता होती है। जहां संभावित सिद्धांत और वर्ग फलन है।
उदाहरण
उदाहरण के लिए निम्न फलन पर विचार करें:
विश्लेषणात्मक फलनों के अनुरूप मानचित्रण विशेषता (उन बिंदुओं पर जहां व्युत्पन्न शून्य नहीं है) हार्मोनिक संयुग्मों की एक ज्यामितीय गुण को उत्पन्न करती है। स्पष्ट रूप से x का हार्मोनिक संयुग्म y है और निरंतर x और y की रेखाएँ लंबकोणीय हैं। विश्लेषणात्मक फलनों के अनुसार निरंतर समोच्य रेखाएं u(x, y) और v(x, y) के समोच्य भी लंबकोणीय होती है। जहां वे f ′(z) के शून्य बिन्दु से प्रतिच्छेदित होती हैं। इसका अर्थ यह है कि v, u द्वारा दिए गए समोच्य फलन के लिए लंबकोणीय प्रक्षेप समस्या का एक विशिष्ट समाधान है। स्वाभाविक रूप से, एकमात्र समाधान ही नहीं है क्योंकि हम v के फलन को भी ले सकते हैं। जिसको सत्रहवीं शताब्दी के गणित सिद्धान्त पर वापस जा रहा है, उन वक्रों को खोजने के लिए जो समकोण पर गैर-प्रतिच्छेदी वक्रों के दिए गए फलन प्रतिच्छेदित करते हैं।
ज्यामिति में हार्मोनिक संयुग्म
गणित में हार्मोनिक संयुग्म शब्द की एक अतिरिक्त घटना है और विशेष रूप से प्रक्षेपी ज्यामिति में दो अंक A और B को अंक C, D की एक युग्म के संबंध में दूसरे युग्म का हार्मोनिक संयुग्म कहा जाता है यदि संयुग्मी अनुपात (ABCD) -1 के बराबर होता है।
संदर्भ
- Brown, James Ward; Churchill, Ruel V. (1996). Complex variables and applications (6th ed.). New York: McGraw-Hill. p. 61. ISBN 0-07-912147-0.
If two given functions u and v are harmonic in a domain D and their first-order partial derivatives satisfy the Cauchy-Riemann equations (2) throughout D, v is said to be a harmonic conjugate of u.