ध्वनिक प्रतिबाधा: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Opposition that a system presents to an acoustic pressure}} {{Sound measurements}} ध्वनिक प्रतिबाधा और विशिष...")
 
No edit summary
Line 1: Line 1:
{{Short description|Opposition that a system presents to an acoustic pressure}}
{{Short description|Opposition that a system presents to an acoustic pressure}}ध्वनिक प्रतिबाधा और विशिष्ट ध्वनिक प्रतिबाधा विपक्ष के उपाय हैं जो सिस्टम पर लागू [[ध्वनिक दबाव]] से उत्पन्न ध्वनिक प्रवाह को प्रस्तुत करते हैं। ध्वनिक प्रतिबाधा की [[इकाइयों की अंतर्राष्ट्रीय प्रणाली]] पास्कल-सेकंड प्रति घन मीटर है ({{nobreak|Pa·s/m<sup>3</sup>}}), या [[इकाइयों की एमकेएस प्रणाली]] में [[ असली ]] प्रति वर्ग मीटर ({{nobreak|rayl/m<sup>2</sup>}}), जबकि विशिष्ट ध्वनिक प्रतिबाधा पास्कल-सेकंड प्रति मीटर है ({{nobreak|Pa·s/m}}), या MKS प्रणाली में रेल।<ref name=Kinsler>{{cite book|vauthors=Kinsler L, Frey A, Coppens A, Sanders J|year=2000|title=ध्वनिकी की मूल बातें|publisher=Wiley|location=Hoboken|isbn=0-471-84789-5}}</ref> [[विद्युत प्रतिबाधा]] के साथ एक यांत्रिक-विद्युत अनुरूपताएं #प्रतिबाधा अनुरूपताएं हैं, जो उस विरोध को मापती हैं जो एक प्रणाली प्रणाली पर लागू [[वोल्टेज]] से उत्पन्न [[विद्युत प्रवाह]] को प्रस्तुत करती है।
{{Sound measurements}}
 
ध्वनिक प्रतिबाधा और विशिष्ट ध्वनिक प्रतिबाधा विपक्ष के उपाय हैं जो सिस्टम पर लागू [[ध्वनिक दबाव]] से उत्पन्न ध्वनिक प्रवाह को प्रस्तुत करते हैं। ध्वनिक प्रतिबाधा की [[इकाइयों की अंतर्राष्ट्रीय प्रणाली]] पास्कल-सेकंड प्रति घन मीटर है ({{nobreak|Pa·s/m<sup>3</sup>}}), या [[इकाइयों की एमकेएस प्रणाली]] में [[ असली ]] प्रति वर्ग मीटर ({{nobreak|rayl/m<sup>2</sup>}}), जबकि विशिष्ट ध्वनिक प्रतिबाधा पास्कल-सेकंड प्रति मीटर है ({{nobreak|Pa·s/m}}), या MKS प्रणाली में रेल।<ref name=Kinsler>{{cite book|vauthors=Kinsler L, Frey A, Coppens A, Sanders J|year=2000|title=ध्वनिकी की मूल बातें|publisher=Wiley|location=Hoboken|isbn=0-471-84789-5}}</ref> [[विद्युत प्रतिबाधा]] के साथ एक यांत्रिक-विद्युत अनुरूपताएं #प्रतिबाधा अनुरूपताएं हैं, जो उस विरोध को मापती हैं जो एक प्रणाली प्रणाली पर लागू [[वोल्टेज]] से उत्पन्न [[विद्युत प्रवाह]] को प्रस्तुत करती है।


== गणितीय परिभाषाएँ ==
== गणितीय परिभाषाएँ ==

Revision as of 17:17, 2 May 2023

ध्वनिक प्रतिबाधा और विशिष्ट ध्वनिक प्रतिबाधा विपक्ष के उपाय हैं जो सिस्टम पर लागू ध्वनिक दबाव से उत्पन्न ध्वनिक प्रवाह को प्रस्तुत करते हैं। ध्वनिक प्रतिबाधा की इकाइयों की अंतर्राष्ट्रीय प्रणाली पास्कल-सेकंड प्रति घन मीटर है (Pa·s/m3), या इकाइयों की एमकेएस प्रणाली में असली प्रति वर्ग मीटर (rayl/m2), जबकि विशिष्ट ध्वनिक प्रतिबाधा पास्कल-सेकंड प्रति मीटर है (Pa·s/m), या MKS प्रणाली में रेल।[1] विद्युत प्रतिबाधा के साथ एक यांत्रिक-विद्युत अनुरूपताएं #प्रतिबाधा अनुरूपताएं हैं, जो उस विरोध को मापती हैं जो एक प्रणाली प्रणाली पर लागू वोल्टेज से उत्पन्न विद्युत प्रवाह को प्रस्तुत करती है।

गणितीय परिभाषाएँ

ध्वनिक प्रतिबाधा

एक एलटीआई प्रणाली सिद्धांत के लिए | रैखिक समय-अपरिवर्तनीय प्रणाली, प्रणाली पर लागू ध्वनिक दबाव और उसके आवेदन के बिंदु पर उस दबाव की दिशा के लंबवत सतह के माध्यम से परिणामी ध्वनिक मात्रा प्रवाह दर के बीच संबंध द्वारा दिया गया है:[citation needed]

या समकक्ष द्वारा

कहाँ

  • पी ध्वनिक दबाव है;
  • क्यू ध्वनिक आयतन प्रवाह दर है;
  • कनवल्शन ऑपरेटर है;
  • आर 'समय डोमेन में ध्वनिक प्रतिरोध' है;
  • जी = आर−1 टाइम डोमेन (आर) में ध्वनिक चालन है-1 R का कनवल्शन व्युत्क्रम है)।

'ध्वनिक प्रतिबाधा', जिसे Z के रूप में दर्शाया गया है, लाप्लास रूपांतरण, या फूरियर रूपांतरण, या समय डोमेन ध्वनिक प्रतिरोध का विश्लेषणात्मक संकेत है:[1]:

कहाँ

  • लाप्लास रूपांतरण ऑपरेटर है;
  • फूरियर ट्रांसफॉर्म ऑपरेटर है;
  • सबस्क्रिप्ट ए विश्लेषणात्मक प्रतिनिधित्व ऑपरेटर है;
  • क्यू−1 Q का कनवल्शन व्युत्क्रम है।

'ध्वनिक प्रतिरोध', निरूपित R, और 'ध्वनिक प्रतिघात', निरूपित X, क्रमशः ध्वनिक प्रतिबाधा का वास्तविक भाग और काल्पनिक भाग हैं:[citation needed]

कहाँ

  • मैं काल्पनिक इकाई है;
  • जेड (एस) में, आर (एस) समय डोमेन ध्वनिक प्रतिरोध आर (टी), जेड (एस) का लाप्लास परिवर्तन नहीं है;
  • Z(ω) में, R(ω) समय डोमेन ध्वनिक प्रतिरोध R(t), Z(ω) का फूरियर रूपांतरण नहीं है;
  • जेड (टी) में, आर (टी) समय डोमेन ध्वनिक प्रतिरोध है और एक्स (टी) विश्लेषणात्मक प्रतिनिधित्व की परिभाषा के अनुसार समय डोमेन ध्वनिक प्रतिरोध आर (टी) का हिल्बर्ट रूपांतरण है।

'आगमनात्मक ध्वनिक प्रतिक्रिया', निरूपित XL, और कैपेसिटिव एकॉस्टिक रिएक्शन, जिसे X के तौर पर दिखाया गया हैC, क्रमशः ध्वनिक प्रतिक्रिया का सकारात्मक भाग और नकारात्मक भाग हैं:[citation needed]

ध्वनिक प्रवेश, जिसे Y के रूप में चिह्नित किया गया है, लाप्लास रूपांतरण, या फूरियर रूपांतरण, या टाइम डोमेन ध्वनिक चालन का विश्लेषणात्मक प्रतिनिधित्व है:[1]:

कहाँ

  • -1 Z का कनवल्शन व्युत्क्रम है;
  • पी−1 p का कनवल्शन व्युत्क्रम है।

'ध्वनिक चालन', निरूपित G, और 'ध्वनिक संवेदनशीलता', निरूपित B, क्रमशः ध्वनिक प्रवेश का वास्तविक भाग और काल्पनिक भाग हैं:[citation needed]

कहाँ

  • Y(s) में, G(s) समय डोमेन ध्वनिक चालन G(t), Y(s) का लाप्लास रूपांतरण नहीं है;
  • Y(ω) में, G(ω) समय डोमेन ध्वनिक चालन G(t), Y(ω) का फूरियर रूपांतरण नहीं है;
  • वाई (टी) में, जी (टी) समय डोमेन ध्वनिक प्रवाहकत्त्व है और बी (टी) विश्लेषणात्मक प्रतिनिधित्व की परिभाषा के अनुसार समय डोमेन ध्वनिक प्रवाहकत्त्व जी (टी) का हिल्बर्ट रूपांतरण है।

ध्वनिक प्रतिरोध एक ध्वनिक तरंग के ऊर्जा हस्तांतरण का प्रतिनिधित्व करता है। दबाव और गति चरण में हैं, इसलिए तरंग के आगे के माध्यम पर काम किया जाता है। ध्वनिक प्रतिक्रिया उस दबाव का प्रतिनिधित्व करती है जो गति के साथ चरण से बाहर है और औसत ऊर्जा हस्तांतरण का कारण नहीं बनता है।[citation needed] उदाहरण के लिए, एक अंग पाइप से जुड़े एक बंद बल्ब में हवा चलती है और दबाव होता है, लेकिन वे चरण से बाहर होते हैं इसलिए इसमें कोई शुद्ध ऊर्जा संचारित नहीं होती है। जबकि दबाव बढ़ता है, हवा अंदर आती है, और जब यह गिरती है, तो यह बाहर निकलती है, लेकिन जब हवा चलती है तो औसत दबाव वही होता है जब यह बाहर निकलती है, इसलिए शक्ति आगे और पीछे बहती है लेकिन बिना समय औसत ऊर्जा के स्थानांतरण करना।[citation needed] एक और विद्युत सादृश्य एक विद्युत लाइन से जुड़ा एक संधारित्र है: संधारित्र के माध्यम से धारा प्रवाहित होती है लेकिन यह वोल्टेज के साथ चरण से बाहर है, इसलिए एसी शक्ति इसमें संचारित होती है।

विशिष्ट ध्वनिक प्रतिबाधा

एक एलटीआई प्रणाली सिद्धांत के लिए | रैखिक समय-अपरिवर्तनीय प्रणाली, प्रणाली पर लागू ध्वनिक दबाव और उसके आवेदन के बिंदु पर उस दबाव की दिशा में परिणामी कण वेग के बीच संबंध द्वारा दिया जाता है

या समकक्ष द्वारा:

कहाँ

  • पी ध्वनिक दबाव है;
  • v कण वेग है;
  • आर 'समय डोमेन में विशिष्ट ध्वनिक प्रतिरोध' है;
  • जी = आर−1 टाइम डोमेन (r) में विशिष्ट ध्वनिक चालन है-1 r का कनवल्शन व्युत्क्रम है)।[citation needed]

विशिष्ट ध्वनिक प्रतिबाधा, निरूपित z लाप्लास रूपांतरण, या फूरियर रूपांतरण, या समय डोमेन विशिष्ट ध्वनिक प्रतिरोध का विश्लेषणात्मक प्रतिनिधित्व है:[1]:

जहां वि−1 v का कनवल्शन व्युत्क्रम है।

'विशिष्ट ध्वनिक प्रतिरोध', निरूपित r, और 'विशिष्ट ध्वनिक प्रतिघात', निरूपित x, क्रमशः विशिष्ट ध्वनिक प्रतिबाधा का वास्तविक भाग और काल्पनिक भाग हैं:[citation needed]

कहाँ

  • z(s) में, r(s) टाइम डोमेन विशिष्ट ध्वनिक प्रतिरोध r(t), z(s) का लाप्लास रूपांतरण नहीं है;
  • z(ω) में, r(ω) समय डोमेन विशिष्ट ध्वनिक प्रतिरोध r(t), z(ω) का फूरियर रूपांतरण नहीं है;
  • जेड (टी) में, आर (टी) समय डोमेन विशिष्ट ध्वनिक प्रतिरोध है और एक्स (टी) विश्लेषणात्मक प्रतिनिधित्व की परिभाषा के अनुसार समय डोमेन विशिष्ट ध्वनिक प्रतिरोध आर (टी) का हिल्बर्ट रूपांतरण है।

'विशिष्ट आगमनात्मक ध्वनिक प्रतिक्रिया', निरूपित xL, और विशिष्ट कैपेसिटिव ध्वनिक प्रतिक्रिया, जिसे x के रूप में दर्शाया गया हैC, क्रमशः विशिष्ट ध्वनिक प्रतिक्रिया का सकारात्मक भाग और नकारात्मक भाग हैं:[citation needed]

विशिष्ट ध्वनिक प्रवेश, निरूपित 'y', लाप्लास परिवर्तन, या फूरियर रूपांतरण, या 'समय डोमेन' विशिष्ट ध्वनिक चालन का विश्लेषणात्मक प्रतिनिधित्व है:[1]:

कहाँ

  • -1 z का कनवल्शन व्युत्क्रम है;
  • पी−1 p का कनवल्शन व्युत्क्रम है।

'विशिष्ट ध्वनिक चालन', निरूपित g, और 'विशिष्ट ध्वनिक संवेदनशीलता', निरूपित b, क्रमशः विशिष्ट ध्वनिक प्रवेश का वास्तविक भाग और काल्पनिक भाग हैं:[citation needed]

कहाँ

  • y(s) में, g(s) समय डोमेन ध्वनिक चालन g(t), y(s) का लाप्लास रूपांतरण नहीं है;
  • y(ω) में, g(ω) समय डोमेन ध्वनिक चालन g(t), y(ω) का फूरियर रूपांतरण नहीं है;
  • वाई (टी) में, जी (टी) समय डोमेन ध्वनिक चालन है और बी (टी) विश्लेषणात्मक प्रतिनिधित्व की परिभाषा के अनुसार समय डोमेन ध्वनिक चालन जी (टी) का हिल्बर्ट रूपांतरण है।

विशिष्ट ध्वनिक प्रतिबाधा z एक विशेष माध्यम का एक गहन और व्यापक गुण है (उदाहरण के लिए, हवा या पानी का z निर्दिष्ट किया जा सकता है); दूसरी ओर, ध्वनिक प्रतिबाधा Z एक विशेष माध्यम और ज्यामिति का एक गहन और व्यापक गुण है (उदाहरण के लिए, हवा से भरी एक विशेष वाहिनी का Z निर्दिष्ट किया जा सकता है)।[citation needed]

संबंध

क्षेत्र ए के साथ एपर्चर के माध्यम से गुजरने वाली एक आयामी लहर के लिए, ध्वनिक मात्रा प्रवाह दर क्यू एपर्चर के माध्यम से प्रति सेकंड गुजरने वाले माध्यम की मात्रा है; यदि ध्वनिक प्रवाह dx = v dt की दूरी तय करता है, तो गुजरने वाले माध्यम का आयतन dV = A dx है, इसलिए:[citation needed]

बशर्ते कि तरंग केवल एक आयामी हो, यह उपज देती है


विशेषता ध्वनिक प्रतिबाधा

विशेषता विशिष्ट ध्वनिक प्रतिबाधा

एक आयाम में नॉनडिस्पर्सिव रैखिक ध्वनिकी का संवैधानिक कानून तनाव और तनाव के बीच एक संबंध देता है:[1]: कहाँ

  • पी माध्यम में ध्वनि का दबाव है;
  • ρ माध्यम का घनत्व है;
  • c माध्यम में चलने वाली ध्वनि तरंगों की गति है;
  • δ कण विस्थापन है;
  • x ध्वनि तरंगों के प्रसार की दिशा के साथ-साथ अंतरिक्ष चर है।

यह समीकरण तरल और ठोस दोनों के लिए मान्य है। में

न्यूटन के गति के नियम | माध्यम में स्थानीय रूप से लागू न्यूटन का दूसरा नियम देता है:[2]

इस समीकरण को पिछले एक के साथ जोड़कर एक आयामी तरंग समीकरण प्राप्त होता है:

विमान लहरें

इस तरंग समीकरण के समाधान x के साथ समान गति और विपरीत तरीकों से यात्रा करने वाली दो प्रगतिशील समतल तरंगों के योग से बने हैं:[citation needed]

जिससे निकाला जा सकता है

प्रगतिशील समतल तरंगों के लिए:[citation needed]

या

अंत में, विशिष्ट ध्वनिक प्रतिबाधा z है

[citation needed]

इस विशिष्ट ध्वनिक प्रतिबाधा के निरपेक्ष मूल्य को अक्सर विशेषता विशिष्ट ध्वनिक प्रतिबाधा कहा जाता है और इसे z के रूप में निरूपित किया जाता है।0:[1]: समीकरण भी यही बताते हैं


तापमान का प्रभाव

तापमान ध्वनि की गति और द्रव्यमान घनत्व पर कार्य करता है और इस प्रकार विशिष्ट ध्वनिक प्रतिबाधा पर।[citation needed]

Effect of temperature on properties of air
Celsius
tempe­rature
θ (°C)
Speed of
sound
c (m/s)
Density
of air
ρ (kg/m3)
Characteristic specific
acoustic impedance
z0 (Pa·s/m)
35 351.88 1.1455 403.2
30 349.02 1.1644 406.5
25 346.13 1.1839 409.4
20 343.21 1.2041 413.3
15 340.27 1.2250 416.9
10 337.31 1.2466 420.5
5 334.32 1.2690 424.3
0 331.30 1.2922 428.0
−5 328.25 1.3163 432.1
−10 325.18 1.3413 436.1
−15 322.07 1.3673 440.3
−20 318.94 1.3943 444.6
−25 315.77 1.4224 449.1

विशेषता ध्वनिक प्रतिबाधा

क्षेत्र ए, जेड = जेड/ए के साथ एपर्चर के माध्यम से गुजरने वाली एक आयामी लहर के लिए, इसलिए यदि लहर एक प्रगतिशील विमान लहर है, तो:[citation needed]

इस ध्वनिक प्रतिबाधा के निरपेक्ष मूल्य को अक्सर विशिष्ट ध्वनिक प्रतिबाधा कहा जाता है और इसे Z के रूप में निरूपित किया जाता है।0:[1]: और विशेषता विशिष्ट ध्वनिक प्रतिबाधा है

यदि क्षेत्र ए के साथ एपर्चर एक पाइप की शुरुआत है और पाइप में एक समतल तरंग भेजी जाती है, तो एपर्चर से गुजरने वाली तरंग प्रतिबिंबों की अनुपस्थिति में एक प्रगतिशील समतल तरंग होती है, और आमतौर पर पाइप के दूसरे छोर से प्रतिबिंब , चाहे खुला हो या बंद, एक छोर से दूसरे छोर तक यात्रा करने वाली तरंगों का योग है।[3] (यह संभव है कि जब पाइप बहुत लंबा हो तो कोई प्रतिबिंब न हो, क्योंकि परावर्तित तरंगों को लौटने में लंबा समय लगता है, और पाइप की दीवार पर नुकसान के माध्यम से उनका क्षीणन होता है।[3] इस तरह के प्रतिबिंब और परिणामी स्थायी तरंगें संगीत वाद्य यंत्रों के डिजाइन और संचालन में बहुत महत्वपूर्ण हैं।[4]


यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Kinsler L, Frey A, Coppens A, Sanders J (2000). ध्वनिकी की मूल बातें. Hoboken: Wiley. ISBN 0-471-84789-5.
  2. Attenborough K, Postema M (2008). ध्वनिकी के लिए एक जेब के आकार का परिचय. Kingston upon Hull: University of Hull. doi:10.5281/zenodo.7504060. ISBN 978-90-812588-2-1.
  3. 3.0 3.1 Rossing TD, Fletcher NH (2004). कंपन और ध्वनि के सिद्धांत (2nd ed.). Heidelberg: Springer. ISBN 978-1-4757-3822-3. OCLC 851835364.
  4. Fletcher NH, Rossing TD (1998). संगीत वाद्ययंत्र की भौतिकी (2nd ed.). Heidelberg: Springer. ISBN 978-0-387-21603-4. OCLC 883383570.


बाहरी संबंध