पीटरसन आव्यूह: Difference between revisions
(→उदाहरण) |
No edit summary |
||
Line 1: | Line 1: | ||
पीटरसन | पीटरसन आव्यूह [[ जीव रसायन |जीव रसायन]] की प्रणालियों का एक व्यापक विवरण है जिसका उपयोग [[बायोडिग्रेडेबिलिटी भविष्यवाणी|बायोडिग्रेडेबिलिटी पूर्व संकल्पनाओं]] (इंजीनियर अपघटन) के साथ-साथ पर्यावरण प्रणालियों में [[रासायनिक रिएक्टर]] को प्रारूपित करने के लिए किया जाता है। इसमें सम्मिलित घटकों ([[रसायन]], प्रदूषकों, [[बायोमास]], [[गैसों]]) की संख्या के रूप में कई कॉलम और सम्मिलित [[रासायनिक प्रक्रिया]] (जैव रासायनिक प्रतिक्रियाओं और भौतिक गिरावट) की संख्या के रूप में कई पंक्तियाँ स्थापित होती हैं। प्रत्येक परिवर्तन ([[दर समीकरण]]) के [[कैनेटीक्स (रसायन विज्ञान)|गतिज ऊर्जा (रसायन विज्ञान)]] के विवरण को संचालित करने के लिए एक और कॉलम जोड़ा गया है।<ref name=Russell>{{cite book|last=Russell|first=David L.|title=व्यावहारिक अपशिष्ट जल उपचार|year=2006|publisher=Wiley|location=Hoboken, NJ|isbn=978-0-471-78044-1|pages=288|url=http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471780448.html}}</ref><ref name=Fang>{{cite book|last=Fang|first=editor, Herbert H.P.|title=Environmental anaerobic technology : applications and new developments|year=2010|publisher=Imperial College Press|location=London|isbn=9781848165427}}</ref> | ||
== | == आव्यूह संरचना == | ||
प्रत्येक प्रक्रिया के लिए द्रव्यमान संरक्षण सिद्धांत | प्रत्येक प्रक्रिया के लिए द्रव्यमान संरक्षण सिद्धांत आव्यूह की पंक्तियों में व्यक्त किया गया है। यदि सभी घटकों को सम्मिलित किया जाता है (कोई भी छोड़ा नहीं जाता है) तो द्रव्यमान संरक्षण सिद्धांत बताता है कि, प्रत्येक प्रक्रिया के लिए: | ||
: <math> | : <math> | ||
Line 42: | Line 42: | ||
\frac{d [\ce P]}{d t} &= k_\ce{cat}[\ce ES] | \frac{d [\ce P]}{d t} &= k_\ce{cat}[\ce ES] | ||
\end{align}</math> | \end{align}</math> | ||
इसलिए, पीटरसन | इसलिए, पीटरसन आव्यूह के रूप में संदर्भित होता है। | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
Line 55: | Line 55: | ||
| P4: ES का E और P में अग्र अपघटन || 0 || 0 || 0 || +1 || −1 || +1 || <math chem> k_\ce{cat}[\ce{ES}]</math> | | P4: ES का E और P में अग्र अपघटन || 0 || 0 || 0 || +1 || −1 || +1 || <math chem> k_\ce{cat}[\ce{ES}]</math> | ||
|} | |} | ||
पीटरसन | पीटरसन आव्यूह का उपयोग प्रणाली के दर समीकरण को लिखने के लिए किया जा सकता है | ||
:<math chem> | :<math chem> |
Revision as of 17:37, 24 May 2023
पीटरसन आव्यूह जीव रसायन की प्रणालियों का एक व्यापक विवरण है जिसका उपयोग बायोडिग्रेडेबिलिटी पूर्व संकल्पनाओं (इंजीनियर अपघटन) के साथ-साथ पर्यावरण प्रणालियों में रासायनिक रिएक्टर को प्रारूपित करने के लिए किया जाता है। इसमें सम्मिलित घटकों (रसायन, प्रदूषकों, बायोमास, गैसों) की संख्या के रूप में कई कॉलम और सम्मिलित रासायनिक प्रक्रिया (जैव रासायनिक प्रतिक्रियाओं और भौतिक गिरावट) की संख्या के रूप में कई पंक्तियाँ स्थापित होती हैं। प्रत्येक परिवर्तन (दर समीकरण) के गतिज ऊर्जा (रसायन विज्ञान) के विवरण को संचालित करने के लिए एक और कॉलम जोड़ा गया है।[1][2]
आव्यूह संरचना
प्रत्येक प्रक्रिया के लिए द्रव्यमान संरक्षण सिद्धांत आव्यूह की पंक्तियों में व्यक्त किया गया है। यदि सभी घटकों को सम्मिलित किया जाता है (कोई भी छोड़ा नहीं जाता है) तो द्रव्यमान संरक्षण सिद्धांत बताता है कि, प्रत्येक प्रक्रिया के लिए:
जहाँ प्रत्येक घटक की घनत्व दर है। इसे स्तुईचिओमेटरी प्रक्रिया के रूप में भी देखा जा सकता है।
इसके अलावा, सभी प्रक्रियाओं के एक साथ प्रभाव के लिए प्रत्येक घटक की भिन्नता की दर का आसानी से कॉलमों के योग से आकलन किया जा सकता है:
जहाँ प्रत्येक प्रक्रिया की प्रतिक्रिया दर हैं।
उदाहरण
माइकलिस-मेंटेन एंजाइम प्रतिक्रिया के बाद प्रतिक्रिया के तीसरे क्रम की एक प्रणाली के रूप में कार्य करता है।
जहां अभिकर्मक A और B मिलकर कार्यद्रव S (S = AB2), जो एंजाइम E की मदद से उत्पाद P में परिवर्तित हो जाता है। प्रत्येक पदार्थ के लिए उत्पादन दर निम्नलिखित है:
इसलिए, पीटरसन आव्यूह के रूप में संदर्भित होता है।
अवयव (kmol/m³) प्रक्रिया |
A | B | S | E | ES | P | अभिक्रिया दर |
---|---|---|---|---|---|---|---|
P1: A और B से S का दूसरा क्रम गठन | −1 | −2 | +1 | 0 | 0 | 0 | |
P2: E और S से ES का बनना | 0 | 0 | −1 | −1 | +1 | 0 | |
P3: ES का E और S में पश्च अपघटन | 0 | 0 | +1 | +1 | −1 | 0 | |
P4: ES का E और P में अग्र अपघटन | 0 | 0 | 0 | +1 | −1 | +1 |
पीटरसन आव्यूह का उपयोग प्रणाली के दर समीकरण को लिखने के लिए किया जा सकता है
संदर्भ
- ↑ Russell, David L. (2006). व्यावहारिक अपशिष्ट जल उपचार. Hoboken, NJ: Wiley. p. 288. ISBN 978-0-471-78044-1.
- ↑ Fang, editor, Herbert H.P. (2010). Environmental anaerobic technology : applications and new developments. London: Imperial College Press. ISBN 9781848165427.
{{cite book}}
:|first=
has generic name (help)CS1 maint: multiple names: authors list (link)