सशर्त संभाव्यता वितरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Probability theory and statistics concept}}
{{Short description|Probability theory and statistics concept}}
संभाव्यता सिद्धांत एवं सांख्यिकी में, दो [[संयुक्त संभाव्यता वितरण]] यादृच्छिक चर दिए गए हैं <math>X</math> एवं <math>Y</math>, की सशर्त संभाव्यता वितरण <math>Y</math> दिया गया <math>X</math> का संभाव्यता वितरण है।  <math>Y</math> कब <math>X</math> विशेष मान के रूप में जाना जाता है, कुछ स्थितियों में सशर्त संभावनाओं को अनिर्दिष्ट मान वाले कार्यों के रूप में व्यक्त किया जा सकता है। कब दोनों <math>X</math> एवं <math>Y</math> श्रेणीबद्ध चर होते हैं, सशर्त संभावना सारणी सामान्यतः सशर्त संभावना का प्रतिनिधित्व करने के लिए उपयोग की जाती है। सशर्त वितरण यादृच्छिक चर के [[सीमांत वितरण]] के विपरीत है, जो कि अन्य चर के मान के संदर्भ के बिना इसका वितरण होता है।
संभाव्यता सिद्धांत एवं सांख्यिकी में, दो [[संयुक्त संभाव्यता वितरण]] यादृच्छिक चर दिए गए हैं <math>X</math> एवं <math>Y</math>, की नियमबद्ध संभाव्यता वितरण <math>Y</math> दिया गया <math>X</math> का संभाव्यता वितरण है।  <math>Y</math> कब <math>X</math> विशेष मान के रूप में जाना जाता है, कुछ स्थितियों में नियमबद्ध संभावनाओं को अनिर्दिष्ट मान वाले कार्यों के रूप में व्यक्त किया जा सकता है। कब दोनों <math>X</math> एवं <math>Y</math> श्रेणीबद्ध चर होते हैं, नियमबद्ध संभावना सारणी सामान्यतः नियमबद्ध संभावना का प्रतिनिधित्व करने के लिए उपयोग की जाती है। नियमबद्ध वितरण यादृच्छिक चर के [[सीमांत वितरण]] के विपरीत है, जो कि अन्य चर के मान के संदर्भ के बिना इसका वितरण होता है।


यदि  <math>Y</math> का सशर्त वितरण दिया गया <math>X</math> सतत वितरण होता है, तो इसके संभाव्यता घनत्व फंक्शन को सशर्त घनत्व फंक्शन के रूप में जाना जाता है।<ref>{{cite book |first=Sheldon M. |last=Ross |authorlink=Sheldon M. Ross |title=संभाव्यता मॉडल का परिचय|location=San Diego |publisher=Academic Press |edition=Fifth |year=1993 |isbn=0-12-598455-3 |pages=88–91 }}</ref>  सशर्त वितरण के गुण, जैसे क्षण (गणित), प्रायः सशर्त माध्य एवं सशर्त भिन्नता जैसे संबंधित नामों से संदर्भित होते हैं।
यदि  <math>Y</math> का नियमबद्ध वितरण दिया गया <math>X</math> सतत वितरण होता है, तो इसके संभाव्यता घनत्व फंक्शन को नियमबद्ध घनत्व फंक्शन के रूप में जाना जाता है।<ref>{{cite book |first=Sheldon M. |last=Ross |authorlink=Sheldon M. Ross |title=संभाव्यता मॉडल का परिचय|location=San Diego |publisher=Academic Press |edition=Fifth |year=1993 |isbn=0-12-598455-3 |pages=88–91 }}</ref>  नियमबद्ध वितरण के गुण, जैसे क्षण (गणित), प्रायः नियमबद्ध माध्य एवं नियमबद्ध भिन्नता जैसे संबंधित नामों से संदर्भित होते हैं।


अधिक सामान्यतः दो से अधिक चर के समूह के उपसमुच्चय के सशर्त वितरण का उल्लेख कर सकते हैं; यह सशर्त वितरण शेष सभी चरों के मूल्यों पर आकस्मिक है, एवं अधिक चर उपसमुच्चय में सम्मिलित हैं, तो यह सशर्त वितरण सम्मिलित चरों का सशर्त [[संयुक्त वितरण]] होता है।
अधिक सामान्यतः दो से अधिक चर के समूह के उपसमुच्चय के नियमबद्ध वितरण का उल्लेख कर सकते हैं; यह नियमबद्ध वितरण शेष सभी चरों के मूल्यों पर आकस्मिक है, एवं अधिक चर उपसमुच्चय में सम्मिलित हैं, तो यह नियमबद्ध वितरण सम्मिलित चरों का नियमबद्ध [[संयुक्त वितरण]] होता है।


== सशर्त असतत वितरण ==
== नियमबद्ध असतत वितरण ==
[[असतत यादृच्छिक चर]] के लिए, सशर्त संभाव्यता द्रव्यमान फंक्शन <math>Y</math> दिया गया, <math>X=x</math> इसकी परिभाषा के अनुसार लिखा जा सकता है।
[[असतत यादृच्छिक चर]] के लिए, नियमबद्ध संभाव्यता द्रव्यमान फंक्शन <math>Y</math> दिया गया, <math>X=x</math> इसकी परिभाषा के अनुसार लिखा जा सकता है।


{{Equation box 1
{{Equation box 1
Line 24: Line 24:


=== उदाहरण ===
=== उदाहरण ===
मेले के रोल पर विचार करें {{dice}} एवं जाने <math>X=1</math> अगर संख्या सम है (यानी, 2, 4, या 6) एवं <math>X=0</math> अन्यथा। इसके अतिरिक्त, चलो <math>Y=1</math> यदि संख्या अभाज्य है (यानी, 2, 3, या 5) एवं <math>Y=0</math> अन्यथा।
मेले के रोल एवं {{dice}} पर विचार करें,  <math>X=1</math> अगर संख्या सम है (अर्थात, 2, 4, या 6) एवं <math>X=0</math> अन्यथा,  इसके अतिरिक्त, चलो <math>Y=1</math> यदि संख्या अभाज्य है (अर्थात, 2, 3, या 5) एवं <math>Y=0</math> है।
{| class="wikitable"
{| class="wikitable"
|-
|-
Line 33: Line 33:
| Y || 0 || 1 || 1 || 0 || 1 || 0
| Y || 0 || 1 || 1 || 0 || 1 || 0
|}
|}
फिर बिना शर्त संभावना है कि <math>X=1</math> 3/6 = 1/2 है (चूंकि पासा के छह संभावित रोल हैं, जिनमें से तीन सम हैं), जबकि संभावना है कि <math>X=1</math> सशर्त <math>Y=1</math> 1/3 है (चूँकि तीन संभावित अभाज्य संख्याएँ हैं - 2, 3, एवं 5 - जिनमें से  सम है)।
बिना शर्त संभावना है कि <math>X=1</math> 3/6 = 1/2 है (चूंकि डाइस के छह संभावित रोल हैं, जिनमें से तीन सम हैं), जबकि संभावना है कि <math>X=1</math> नियमबद्ध <math>Y=1</math> 1/3 है (चूँकि तीन संभावित अभाज्य संख्याएँ हैं - 2, 3, एवं 5 - जिनमें से  सम है)।


== सशर्त निरंतर वितरण ==
== नियमबद्ध निरंतर वितरण ==
इसी तरह निरंतर यादृच्छिक चर के लिए, सशर्त प्रायिकता घनत्व फंक्शन <math>Y</math> मूल्य की घटना को देखते हुए <math>x</math> का <math>X</math> रूप में लिखा जा सकता है<ref name=KunIlPark>{{cite book | author=Park,Kun Il| title=संचार के लिए अनुप्रयोगों के साथ संभाव्यता और स्टोकास्टिक प्रक्रियाओं की बुनियादी बातों| publisher=Springer | year=2018 | isbn=978-3-319-68074-3}}</ref>{{rp|p. 99}}
इसी प्रकार निरंतर यादृच्छिक चर के लिए, नियमबद्ध प्रायिकता घनत्व फंक्शन <math>Y</math> मूल्य की घटना को देखते हुए <math>x</math> को <math>X</math> रूप में लिखा जा सकता है।<ref name=KunIlPark>{{cite book | author=Park,Kun Il| title=संचार के लिए अनुप्रयोगों के साथ संभाव्यता और स्टोकास्टिक प्रक्रियाओं की बुनियादी बातों| publisher=Springer | year=2018 | isbn=978-3-319-68074-3}}</ref>


{{Equation box 1
{{Equation box 1
Line 47: Line 47:
|background colour=#F5FFFA}}
|background colour=#F5FFFA}}


कहाँ <math>f_{X,Y}(x,y)</math> का संयुक्त वितरण देता है <math>X</math> एवं <math>Y</math>, जबकि <math>f_X(x)</math> के लिए [[सीमांत घनत्व]] देता है <math>X</math>. साथ ही इस मामले में यह जरूरी है <math>f_X(x)>0</math>.
जहाँ <math>f_{X,Y}(x,y)</math> का संयुक्त वितरण <math>X</math> एवं <math>Y</math> देता है, जबकि <math>f_X(x)</math> के लिए [[सीमांत घनत्व]] देता है। <math>X</math> के साथ ही इस विषय में यह <math>f_X(x)>0</math> आवश्यक होता है। संभाव्यता वितरण के साथ संबंध <math>X</math> द्वारा <math>Y</math> दिया गया।
 
संभाव्यता वितरण के साथ संबंध <math>X</math> दिया गया <math>Y</math> द्वारा दिया गया है:
:<math>f_{Y\mid X}(y \mid x)f_X(x) = f_{X,Y}(x, y) = f_{X|Y}(x \mid y)f_Y(y). </math>
:<math>f_{Y\mid X}(y \mid x)f_X(x) = f_{X,Y}(x, y) = f_{X|Y}(x \mid y)f_Y(y). </math>
सतत यादृच्छिक चर के सशर्त वितरण की अवधारणा उतनी सहज नहीं है जितनी यह लग सकती है: बोरेल का विरोधाभास दर्शाता है कि सशर्त संभाव्यता घनत्व कार्यों को समन्वय परिवर्तनों के तहत अपरिवर्तनीय नहीं होना चाहिए।
सतत यादृच्छिक चर के नियमबद्ध वितरण की अवधारणा उतनी सहज नहीं है जितनी यह लग सकती है, बोरेल का विरोधाभास दर्शाता है कि नियमबद्ध संभाव्यता घनत्व कार्यों को समन्वय परिवर्तनों के अनुसार अपरिवर्तनीय नहीं होना चाहिए।


=== उदाहरण ===
=== उदाहरण ===
[[File:Multivariate Gaussian.png|thumb|right|300px|द्विपक्षीय सामान्य संयुक्त संभाव्यता वितरण#घनत्व फलन या द्रव्यमान फलन]]ग्राफ यादृच्छिक चर के लिए द्विचर सामान्य वितरण दिखाता है <math>X</math> एवं <math>Y</math>. वितरण देखने के लिए <math>Y</math> सशर्त <math>X=70</math>, कोई पहले रेखा की कल्पना कर सकता है <math>X=70</math> में <math>X,Y</math> विमान (ज्यामिति), एवं फिर उस रेखा वाले विमान की कल्पना करें एवं इसके लंबवत <math>X,Y</math> विमान। संयुक्त सामान्य घनत्व के साथ उस विमान का चौराहा,  बार प्रतिच्छेदन के तहत इकाई क्षेत्र देने के लिए पुन: स्केल किया गया, प्रासंगिक सशर्त घनत्व है <math>Y</math>.
[[File:Multivariate Gaussian.png|thumb|right|300px|द्विपक्षीय सामान्य संयुक्त संभाव्यता वितरण#घनत्व फलन या द्रव्यमान फलन]]ग्राफ यादृच्छिक चर के लिए द्विचर सामान्य वितरण दिखाता है <math>X</math> एवं <math>Y</math>. वितरण देखने के लिए <math>Y</math> नियमबद्ध <math>X=70</math>, कोई पहले रेखा की कल्पना कर सकता है <math>X=70</math> में <math>X,Y</math> विमान (ज्यामिति), एवं फिर उस रेखा वाले विमान की कल्पना करें एवं इसके लंबवत <math>X,Y</math> विमान। संयुक्त सामान्य घनत्व के साथ उस विमान का चौराहा,  बार प्रतिच्छेदन के तहत इकाई क्षेत्र देने के लिए पुन: स्केल किया गया, प्रासंगिक नियमबद्ध घनत्व है <math>Y</math>.


<math>Y\mid X=70 \ \sim\ \mathcal{N}\left(\mu_1+\frac{\sigma_1}{\sigma_2}\rho( 70 - \mu_2),\, (1-\rho^2)\sigma_1^2\right).</math>
<math>Y\mid X=70 \ \sim\ \mathcal{N}\left(\mu_1+\frac{\sigma_1}{\sigma_2}\rho( 70 - \mu_2),\, (1-\rho^2)\sigma_1^2\right).</math>
Line 60: Line 58:


== स्वतंत्रता से संबंध ==
== स्वतंत्रता से संबंध ==
यादृच्छिक चर <math>X</math>, <math>Y</math> [[सांख्यिकीय स्वतंत्रता]] हैं यदि एवं केवल यदि का सशर्त वितरण <math>Y</math> दिया गया <math>X</math> है, के सभी संभव प्राप्तियों के लिए <math>X</math>, के बिना शर्त वितरण के बराबर <math>Y</math>. असतत यादृच्छिक चर के लिए इसका मतलब है <math>P(Y=y|X=x) = P(Y=y)</math> हर संभव के लिए <math>y</math> एवं <math>x</math> साथ <math>P(X=x)>0</math>. निरंतर यादृच्छिक चर के लिए <math>X</math> एवं <math>Y</math>,  [[संयुक्त घनत्व समारोह|संयुक्त घनत्व फंक्शन]] होने का मतलब है <math>f_Y(y|X=x) = f_Y(y)</math> हर संभव के लिए <math>y</math> एवं <math>x</math> साथ <math>f_X(x)>0</math>.
यादृच्छिक चर <math>X</math>, <math>Y</math> [[सांख्यिकीय स्वतंत्रता]] हैं यदि एवं केवल यदि का नियमबद्ध वितरण <math>Y</math> दिया गया <math>X</math> है, के सभी संभव प्राप्तियों के लिए <math>X</math>, के बिना शर्त वितरण के बराबर <math>Y</math>. असतत यादृच्छिक चर के लिए इसका मतलब है <math>P(Y=y|X=x) = P(Y=y)</math> हर संभव के लिए <math>y</math> एवं <math>x</math> साथ <math>P(X=x)>0</math>. निरंतर यादृच्छिक चर के लिए <math>X</math> एवं <math>Y</math>,  [[संयुक्त घनत्व समारोह|संयुक्त घनत्व फंक्शन]] होने का मतलब है <math>f_Y(y|X=x) = f_Y(y)</math> हर संभव के लिए <math>y</math> एवं <math>x</math> साथ <math>f_X(x)>0</math>.


== गुण ==
== गुण ==
के कार्य के रूप में देखा जाता है <math>y</math> माफ़ कर दिया <math>x</math>, <math>P(Y=y|X=x)</math>  प्रायिकता द्रव्यमान फलन है एवं इसलिए सभी का योग है <math>y</math> (या अभिन्न अगर यह  सशर्त संभाव्यता घनत्व है) 1 है। के कार्य के रूप में देखा गया <math>x</math> माफ़ कर दिया <math>y</math>, यह  संभावना कार्य है, ताकि सभी का योग हो <math>x</math> 1 नहीं होना चाहिए।
के कार्य के रूप में देखा जाता है <math>y</math> माफ़ कर दिया <math>x</math>, <math>P(Y=y|X=x)</math>  प्रायिकता द्रव्यमान फलन है एवं इसलिए सभी का योग है <math>y</math> (या अभिन्न अगर यह  नियमबद्ध संभाव्यता घनत्व है) 1 है। के कार्य के रूप में देखा गया <math>x</math> माफ़ कर दिया <math>y</math>, यह  संभावना कार्य है, ताकि सभी का योग हो <math>x</math> 1 नहीं होना चाहिए।


इसके अतिरिक्त,  संयुक्त वितरण के सीमांत को संबंधित सशर्त वितरण की अपेक्षा के रूप में व्यक्त किया जा सकता है। उदाहरण के लिए, <math> p_X(x) = E_{Y}[p_{X|Y}(X \ |\ Y)] </math>.
इसके अतिरिक्त,  संयुक्त वितरण के सीमांत को संबंधित नियमबद्ध वितरण की अपेक्षा के रूप में व्यक्त किया जा सकता है। उदाहरण के लिए, <math> p_X(x) = E_{Y}[p_{X|Y}(X \ |\ Y)] </math>.


== माप-सैद्धांतिक सूत्रीकरण ==
== माप-सैद्धांतिक सूत्रीकरण ==
होने देना <math>(\Omega, \mathcal{F}, P)</math>  संभाव्यता स्थान हो, <math>\mathcal{G} \subseteq \mathcal{F}</math> a <math>\sigma</math>-फ़ील्ड इन <math>\mathcal{F}</math>. दिया गया <math>A\in \mathcal{F}</math>, [[रैडॉन-निकोडिम प्रमेय]] का तात्पर्य है कि वहाँ है<ref>[[#billingsley95|Billingsley (1995)]], p. 430</ref> a  <math>\mathcal{G}</math>- मापने योग्य यादृच्छिक चर <math>P(A\mid\mathcal{G}):\Omega\to \mathbb{R}</math>, सशर्त संभाव्यता कहा जाता है, जैसे कि<math display="block">\int_G P(A\mid\mathcal{G})(\omega) dP(\omega)=P(A\cap G)</math>हर के लिए <math>G\in \mathcal{G}</math>, एवं इस तरह के  यादृच्छिक चर को प्रायिकता शून्य के समूह तक विशिष्ट रूप से परिभाषित किया गया है। सशर्त संभाव्यता को नियमित सशर्त संभावना कहा जाता है यदि  <math> \operatorname{P}(\cdot\mid\mathcal{G})(\omega) </math> पर  संभावना उपाय है <math>(\Omega, \mathcal{F})</math> सभी के लिए <math>\omega \in \Omega</math> ए.ई.
होने देना <math>(\Omega, \mathcal{F}, P)</math>  संभाव्यता स्थान हो, <math>\mathcal{G} \subseteq \mathcal{F}</math> a <math>\sigma</math>-फ़ील्ड इन <math>\mathcal{F}</math>. दिया गया <math>A\in \mathcal{F}</math>, [[रैडॉन-निकोडिम प्रमेय]] का तात्पर्य है कि वहाँ है<ref>[[#billingsley95|Billingsley (1995)]], p. 430</ref> a  <math>\mathcal{G}</math>- मापने योग्य यादृच्छिक चर <math>P(A\mid\mathcal{G}):\Omega\to \mathbb{R}</math>, नियमबद्ध संभाव्यता कहा जाता है, जैसे कि<math display="block">\int_G P(A\mid\mathcal{G})(\omega) dP(\omega)=P(A\cap G)</math>हर के लिए <math>G\in \mathcal{G}</math>, एवं इस तरह के  यादृच्छिक चर को प्रायिकता शून्य के समूह तक विशिष्ट रूप से परिभाषित किया गया है। नियमबद्ध संभाव्यता को नियमित नियमबद्ध संभावना कहा जाता है यदि  <math> \operatorname{P}(\cdot\mid\mathcal{G})(\omega) </math> पर  संभावना उपाय है <math>(\Omega, \mathcal{F})</math> सभी के लिए <math>\omega \in \Omega</math> ए.ई.


विशेष स्थितियां:
विशेष स्थितियां:


* तुच्छ सिग्मा बीजगणित के लिए <math>\mathcal G= \{\emptyset,\Omega\}</math>, सशर्त संभावना  स्थिर कार्य है <math>\operatorname{P}\!\left( A\mid \{\emptyset,\Omega\} \right) = \operatorname{P}(A).</math>
* तुच्छ सिग्मा बीजगणित के लिए <math>\mathcal G= \{\emptyset,\Omega\}</math>, नियमबद्ध संभावना  स्थिर कार्य है <math>\operatorname{P}\!\left( A\mid \{\emptyset,\Omega\} \right) = \operatorname{P}(A).</math>
* अगर <math>A\in \mathcal{G}</math>,  तब <math>\operatorname{P}(A\mid\mathcal{G})=1_A</math>, संकेतक फ़ंक्शन (नीचे परिभाषित)।
* अगर <math>A\in \mathcal{G}</math>,  तब <math>\operatorname{P}(A\mid\mathcal{G})=1_A</math>, संकेतक फ़ंक्शन (नीचे परिभाषित)।
होने देना <math>X : \Omega \to E</math>  हो <math>(E, \mathcal{E})</math>-मूल्यवान यादृच्छिक चर। प्रत्येक के लिए <math>B \in \mathcal{E}</math>, परिभाषित करना <math display="block">\mu_{X \, | \, \mathcal{G}} (B \, |\, \mathcal{G}) = \mathrm{P} (X^{-1}(B) \, | \, \mathcal{G}).</math>किसी के लिए <math>\omega \in \Omega</math>, कार्यक्रम <math>\mu_{X \, | \mathcal{G}}(\cdot \, | \mathcal{G}) (\omega) : \mathcal{E} \to \mathbb{R}</math> सशर्त अपेक्षा कहा जाता है # की सशर्त संभाव्यता वितरण की परिभाषा <math>X</math> दिया गया <math>\mathcal{G}</math>. यदि यह  संभाव्यता माप है <math>(E, \mathcal{E})</math>, तो इसे नियमित सशर्त संभाव्यता कहा जाता है।
होने देना <math>X : \Omega \to E</math>  हो <math>(E, \mathcal{E})</math>-मूल्यवान यादृच्छिक चर। प्रत्येक के लिए <math>B \in \mathcal{E}</math>, परिभाषित करना <math display="block">\mu_{X \, | \, \mathcal{G}} (B \, |\, \mathcal{G}) = \mathrm{P} (X^{-1}(B) \, | \, \mathcal{G}).</math>किसी के लिए <math>\omega \in \Omega</math>, कार्यक्रम <math>\mu_{X \, | \mathcal{G}}(\cdot \, | \mathcal{G}) (\omega) : \mathcal{E} \to \mathbb{R}</math> नियमबद्ध अपेक्षा कहा जाता है # की नियमबद्ध संभाव्यता वितरण की परिभाषा <math>X</math> दिया गया <math>\mathcal{G}</math>. यदि यह  संभाव्यता माप है <math>(E, \mathcal{E})</math>, तो इसे नियमित नियमबद्ध संभाव्यता कहा जाता है।


वास्तविक-मूल्यवान यादृच्छिक चर के लिए (बोरेल के संबंध में <math>\sigma</math>-मैदान <math>\mathcal{R}^1</math> पर <math>\mathbb{R}</math>), प्रत्येक सशर्त संभाव्यता वितरण नियमित है।<ref>[[#billingsley95|Billingsley (1995)]], p. 439</ref> इस मामले में,<math>E[X \mid \mathcal{G}] = \int_{-\infty}^\infty x \, \mu(d x, \cdot)</math> लगभग निश्चित रूप से।
वास्तविक-मूल्यवान यादृच्छिक चर के लिए (बोरेल के संबंध में <math>\sigma</math>-मैदान <math>\mathcal{R}^1</math> पर <math>\mathbb{R}</math>), प्रत्येक नियमबद्ध संभाव्यता वितरण नियमित है।<ref>[[#billingsley95|Billingsley (1995)]], p. 439</ref> इस मामले में,<math>E[X \mid \mathcal{G}] = \int_{-\infty}^\infty x \, \mu(d x, \cdot)</math> लगभग निश्चित रूप से।


=== सशर्त अपेक्षा से संबंध ===
=== नियमबद्ध अपेक्षा से संबंध ===
किसी भी घटना के लिए <math>A \in \mathcal{F}</math>, [[सूचक समारोह|सूचक फंक्शन]] को परिभाषित करें:
किसी भी घटना के लिए <math>A \in \mathcal{F}</math>, [[सूचक समारोह|सूचक फंक्शन]] को परिभाषित करें:


Line 85: Line 83:


:<math>\operatorname{E}(\mathbf{1}_A) = \operatorname{P}(A). \; </math>
:<math>\operatorname{E}(\mathbf{1}_A) = \operatorname{P}(A). \; </math>
ए दिया  <math>\sigma</math>-मैदान <math>\mathcal{G} \subseteq \mathcal{F}</math>, सशर्त संभावना <math> \operatorname{P}(A\mid\mathcal{G})</math> के लिए संकेतक फ़ंक्शन की [[सशर्त अपेक्षा]] का संस्करण है <math>A</math>:
ए दिया  <math>\sigma</math>-मैदान <math>\mathcal{G} \subseteq \mathcal{F}</math>, नियमबद्ध संभावना <math> \operatorname{P}(A\mid\mathcal{G})</math> के लिए संकेतक फ़ंक्शन की [[सशर्त अपेक्षा|नियमबद्ध अपेक्षा]] का संस्करण है <math>A</math>:


:<math>\operatorname{P}(A\mid\mathcal{G}) = \operatorname{E}(\mathbf{1}_A\mid\mathcal{G}) \; </math>
:<math>\operatorname{P}(A\mid\mathcal{G}) = \operatorname{E}(\mathbf{1}_A\mid\mathcal{G}) \; </math>
नियमित सशर्त संभाव्यता के संबंध में यादृच्छिक चर की अपेक्षा इसकी सशर्त अपेक्षा के बराबर है।
नियमित नियमबद्ध संभाव्यता के संबंध में यादृच्छिक चर की अपेक्षा इसकी नियमबद्ध अपेक्षा के बराबर है।


== यह भी देखें ==
== यह भी देखें ==
* [[कंडीशनिंग (संभावना)]]
* [[कंडीशनिंग (संभावना)]]
*[[सशर्त संभाव्यता]]
*[[सशर्त संभाव्यता|नियमबद्ध संभाव्यता]]
* [[नियमित सशर्त संभावना]]
* [[नियमित सशर्त संभावना|नियमित नियमबद्ध संभावना]]
* बेयस प्रमेय
* बेयस प्रमेय


Line 119: Line 117:


श्रेणी:संभाव्यता वितरण का सिद्धांत
श्रेणी:संभाव्यता वितरण का सिद्धांत
श्रेणी: सशर्त संभावना
श्रेणी: नियमबद्ध संभावना




[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 12/05/2023]]
[[Category:Created On 12/05/2023]]

Revision as of 12:41, 16 May 2023

संभाव्यता सिद्धांत एवं सांख्यिकी में, दो संयुक्त संभाव्यता वितरण यादृच्छिक चर दिए गए हैं एवं , की नियमबद्ध संभाव्यता वितरण दिया गया का संभाव्यता वितरण है। कब विशेष मान के रूप में जाना जाता है, कुछ स्थितियों में नियमबद्ध संभावनाओं को अनिर्दिष्ट मान वाले कार्यों के रूप में व्यक्त किया जा सकता है। कब दोनों एवं श्रेणीबद्ध चर होते हैं, नियमबद्ध संभावना सारणी सामान्यतः नियमबद्ध संभावना का प्रतिनिधित्व करने के लिए उपयोग की जाती है। नियमबद्ध वितरण यादृच्छिक चर के सीमांत वितरण के विपरीत है, जो कि अन्य चर के मान के संदर्भ के बिना इसका वितरण होता है।

यदि का नियमबद्ध वितरण दिया गया सतत वितरण होता है, तो इसके संभाव्यता घनत्व फंक्शन को नियमबद्ध घनत्व फंक्शन के रूप में जाना जाता है।[1] नियमबद्ध वितरण के गुण, जैसे क्षण (गणित), प्रायः नियमबद्ध माध्य एवं नियमबद्ध भिन्नता जैसे संबंधित नामों से संदर्भित होते हैं।

अधिक सामान्यतः दो से अधिक चर के समूह के उपसमुच्चय के नियमबद्ध वितरण का उल्लेख कर सकते हैं; यह नियमबद्ध वितरण शेष सभी चरों के मूल्यों पर आकस्मिक है, एवं अधिक चर उपसमुच्चय में सम्मिलित हैं, तो यह नियमबद्ध वितरण सम्मिलित चरों का नियमबद्ध संयुक्त वितरण होता है।

नियमबद्ध असतत वितरण

असतत यादृच्छिक चर के लिए, नियमबद्ध संभाव्यता द्रव्यमान फंक्शन दिया गया, इसकी परिभाषा के अनुसार लिखा जा सकता है।

होने के कारण भाजक में यह केवल गैर-शून्य के लिए परिभाषित किया गया है (इसलिए सख्ती से सकारात्मक) संभाव्यता वितरण के साथ संबंध एवं दिया गया है।


उदाहरण

मेले के रोल एवं die पर विचार करें, अगर संख्या सम है (अर्थात, 2, 4, या 6) एवं अन्यथा, इसके अतिरिक्त, चलो यदि संख्या अभाज्य है (अर्थात, 2, 3, या 5) एवं है।

D 1 2 3 4 5 6
X 0 1 0 1 0 1
Y 0 1 1 0 1 0

बिना शर्त संभावना है कि 3/6 = 1/2 है (चूंकि डाइस के छह संभावित रोल हैं, जिनमें से तीन सम हैं), जबकि संभावना है कि नियमबद्ध 1/3 है (चूँकि तीन संभावित अभाज्य संख्याएँ हैं - 2, 3, एवं 5 - जिनमें से सम है)।

नियमबद्ध निरंतर वितरण

इसी प्रकार निरंतर यादृच्छिक चर के लिए, नियमबद्ध प्रायिकता घनत्व फंक्शन मूल्य की घटना को देखते हुए को रूप में लिखा जा सकता है।[2]

जहाँ का संयुक्त वितरण एवं देता है, जबकि के लिए सीमांत घनत्व देता है। के साथ ही इस विषय में यह आवश्यक होता है। संभाव्यता वितरण के साथ संबंध द्वारा दिया गया।

सतत यादृच्छिक चर के नियमबद्ध वितरण की अवधारणा उतनी सहज नहीं है जितनी यह लग सकती है, बोरेल का विरोधाभास दर्शाता है कि नियमबद्ध संभाव्यता घनत्व कार्यों को समन्वय परिवर्तनों के अनुसार अपरिवर्तनीय नहीं होना चाहिए।

उदाहरण

द्विपक्षीय सामान्य संयुक्त संभाव्यता वितरण#घनत्व फलन या द्रव्यमान फलन

ग्राफ यादृच्छिक चर के लिए द्विचर सामान्य वितरण दिखाता है एवं . वितरण देखने के लिए नियमबद्ध , कोई पहले रेखा की कल्पना कर सकता है में विमान (ज्यामिति), एवं फिर उस रेखा वाले विमान की कल्पना करें एवं इसके लंबवत विमान। संयुक्त सामान्य घनत्व के साथ उस विमान का चौराहा, बार प्रतिच्छेदन के तहत इकाई क्षेत्र देने के लिए पुन: स्केल किया गया, प्रासंगिक नियमबद्ध घनत्व है .


स्वतंत्रता से संबंध

यादृच्छिक चर , सांख्यिकीय स्वतंत्रता हैं यदि एवं केवल यदि का नियमबद्ध वितरण दिया गया है, के सभी संभव प्राप्तियों के लिए , के बिना शर्त वितरण के बराबर . असतत यादृच्छिक चर के लिए इसका मतलब है हर संभव के लिए एवं साथ . निरंतर यादृच्छिक चर के लिए एवं , संयुक्त घनत्व फंक्शन होने का मतलब है हर संभव के लिए एवं साथ .

गुण

के कार्य के रूप में देखा जाता है माफ़ कर दिया , प्रायिकता द्रव्यमान फलन है एवं इसलिए सभी का योग है (या अभिन्न अगर यह नियमबद्ध संभाव्यता घनत्व है) 1 है। के कार्य के रूप में देखा गया माफ़ कर दिया , यह संभावना कार्य है, ताकि सभी का योग हो 1 नहीं होना चाहिए।

इसके अतिरिक्त, संयुक्त वितरण के सीमांत को संबंधित नियमबद्ध वितरण की अपेक्षा के रूप में व्यक्त किया जा सकता है। उदाहरण के लिए, .

माप-सैद्धांतिक सूत्रीकरण

होने देना संभाव्यता स्थान हो, a -फ़ील्ड इन . दिया गया , रैडॉन-निकोडिम प्रमेय का तात्पर्य है कि वहाँ है[3] a - मापने योग्य यादृच्छिक चर , नियमबद्ध संभाव्यता कहा जाता है, जैसे कि

हर के लिए , एवं इस तरह के यादृच्छिक चर को प्रायिकता शून्य के समूह तक विशिष्ट रूप से परिभाषित किया गया है। नियमबद्ध संभाव्यता को नियमित नियमबद्ध संभावना कहा जाता है यदि पर संभावना उपाय है सभी के लिए ए.ई.

विशेष स्थितियां:

  • तुच्छ सिग्मा बीजगणित के लिए , नियमबद्ध संभावना स्थिर कार्य है
  • अगर , तब , संकेतक फ़ंक्शन (नीचे परिभाषित)।

होने देना हो -मूल्यवान यादृच्छिक चर। प्रत्येक के लिए , परिभाषित करना

किसी के लिए , कार्यक्रम नियमबद्ध अपेक्षा कहा जाता है # की नियमबद्ध संभाव्यता वितरण की परिभाषा दिया गया . यदि यह संभाव्यता माप है , तो इसे नियमित नियमबद्ध संभाव्यता कहा जाता है।

वास्तविक-मूल्यवान यादृच्छिक चर के लिए (बोरेल के संबंध में -मैदान पर ), प्रत्येक नियमबद्ध संभाव्यता वितरण नियमित है।[4] इस मामले में, लगभग निश्चित रूप से।

नियमबद्ध अपेक्षा से संबंध

किसी भी घटना के लिए , सूचक फंक्शन को परिभाषित करें:

जो यादृच्छिक चर है। ध्यान दें कि इस यादृच्छिक चर की अपेक्षा स्वयं A की प्रायिकता के बराबर है:

ए दिया -मैदान , नियमबद्ध संभावना के लिए संकेतक फ़ंक्शन की नियमबद्ध अपेक्षा का संस्करण है :

नियमित नियमबद्ध संभाव्यता के संबंध में यादृच्छिक चर की अपेक्षा इसकी नियमबद्ध अपेक्षा के बराबर है।

यह भी देखें

संदर्भ

उद्धरण

  1. Ross, Sheldon M. (1993). संभाव्यता मॉडल का परिचय (Fifth ed.). San Diego: Academic Press. pp. 88–91. ISBN 0-12-598455-3.
  2. Park,Kun Il (2018). संचार के लिए अनुप्रयोगों के साथ संभाव्यता और स्टोकास्टिक प्रक्रियाओं की बुनियादी बातों. Springer. ISBN 978-3-319-68074-3.
  3. Billingsley (1995), p. 430
  4. Billingsley (1995), p. 439


स्रोत

श्रेणी:संभाव्यता वितरण का सिद्धांत श्रेणी: नियमबद्ध संभावना