सशर्त संभाव्यता वितरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 51: Line 51:


=== उदाहरण ===
=== उदाहरण ===
[[File:Multivariate Gaussian.png|thumb|right|300px|द्विपक्षीय सामान्य संयुक्त संभाव्यता वितरण#घनत्व फलन या द्रव्यमान फलन]]आलेख यादृच्छिक चर के लिए द्विचर सामान्य वितरण <math>X</math> एवं <math>Y</math> दिखाता है, वितरण देखने के लिए <math>Y</math> नियमबद्ध रेखा <math>X=70</math> की कल्पना कर सकता है, <math>X=70</math> में <math>X,Y</math> विमान (ज्यामिति), एवं उस रेखा वाले विमान की कल्पना करें, एवं <math>X,Y</math> इसके लंबवत विमान संयुक्त सामान्य घनत्व के साथ उस विमान का चौराहा, प्रतिच्छेदन के अनुसार इकाई क्षेत्र देने के लिए पुन: स्केल किया गया, प्रासंगिक नियमबद्ध घनत्व <math>Y</math> है।
[[File:Multivariate Gaussian.png|thumb|right|300px|द्विपक्षीय सामान्य संयुक्त संभाव्यता वितरण घनत्व फलन या द्रव्यमान फलन]]आलेख यादृच्छिक चर के लिए द्विचर सामान्य वितरण <math>X</math> एवं <math>Y</math> दिखाता है, वितरण देखने के लिए <math>Y</math> नियमबद्ध रेखा <math>X=70</math> की कल्पना कर सकता है, <math>X=70</math> में <math>X,Y</math> विमान (ज्यामिति), एवं उस रेखा वाले विमान की कल्पना करें, एवं <math>X,Y</math> इसके लंबवत विमान संयुक्त सामान्य घनत्व के साथ उस विमान का अंतःखंड, प्रतिच्छेदन के अनुसार इकाई क्षेत्र देने के लिए पुन: स्केल किया गया, प्रासंगिक नियमबद्ध घनत्व <math>Y</math> है।


<math>Y\mid X=70 \ \sim\ \mathcal{N}\left(\mu_1+\frac{\sigma_1}{\sigma_2}\rho( 70 - \mu_2),\, (1-\rho^2)\sigma_1^2\right).</math>
<math>Y\mid X=70 \ \sim\ \mathcal{N}\left(\mu_1+\frac{\sigma_1}{\sigma_2}\rho( 70 - \mu_2),\, (1-\rho^2)\sigma_1^2\right).</math>
Line 65: Line 65:


== माप-सैद्धांतिक सूत्रीकरण ==
== माप-सैद्धांतिक सूत्रीकरण ==
<math>(\Omega, \mathcal{F}, P)</math> होने देना <math>\mathcal{G} \subseteq \mathcal{F}</math> संभाव्यता स्थान हो,  a <math>\sigma</math>-फ़ील्ड इन <math>\mathcal{F}</math>. दिया गया <math>A\in \mathcal{F}</math>, [[रैडॉन-निकोडिम प्रमेय]] का तात्पर्य है कि वहाँ है<ref>[[#billingsley95|Billingsley (1995)]], p. 430</ref> a  <math>\mathcal{G}</math>- मापने योग्य यादृच्छिक चर <math>P(A\mid\mathcal{G}):\Omega\to \mathbb{R}</math>, नियमबद्ध संभाव्यता कहा जाता है, जैसे कि<math display="block">\int_G P(A\mid\mathcal{G})(\omega) dP(\omega)=P(A\cap G)</math>प्रत्येक के लिए <math>G\in \mathcal{G}</math>, एवं इस प्रकार के  यादृच्छिक चर को प्रायिकता शून्य के समूह तक विशिष्ट रूप से परिभाषित किया गया है। नियमबद्ध संभाव्यता को नियमित नियमबद्ध संभावना कहा जाता है यदि  <math> \operatorname{P}(\cdot\mid\mathcal{G})(\omega) </math> पर  संभावना प्रविधि है <math>(\Omega, \mathcal{F})</math> सभी के लिए <math>\omega \in \Omega</math> होता है।
<math>(\Omega, \mathcal{F}, P)</math> होने में <math>\mathcal{G} \subseteq \mathcal{F}</math> संभाव्यता स्थान है,  a <math>\sigma</math>-फ़ील्ड इन <math>\mathcal{F}</math>. दिया गया <math>A\in \mathcal{F}</math>, [[रैडॉन-निकोडिम प्रमेय]] का तात्पर्य है कि <ref>[[#billingsley95|Billingsley (1995)]], p. 430</ref> a  <math>\mathcal{G}</math>- मापने योग्य यादृच्छिक चर <math>P(A\mid\mathcal{G}):\Omega\to \mathbb{R}</math>, नियमबद्ध संभाव्यता कहा जाता है, जैसे कि<math display="block">\int_G P(A\mid\mathcal{G})(\omega) dP(\omega)=P(A\cap G)</math>प्रत्येक के लिए <math>G\in \mathcal{G}</math> इस प्रकार के  यादृच्छिक चर को प्रायिकता शून्य के समूह तक विशिष्ट रूप से परिभाषित किया गया है। नियमबद्ध संभाव्यता को नियमित नियमबद्ध संभावना कहा जाता है यदि  <math> \operatorname{P}(\cdot\mid\mathcal{G})(\omega) </math> पर  संभावना प्रविधि है <math>(\Omega, \mathcal{F})</math> सभी के लिए <math>\omega \in \Omega</math> होता है।


विशेष स्थितियां:
विशेष स्थितियां:


* <math>\mathcal G= \{\emptyset,\Omega\}</math> तुच्छ सिग्मा बीजगणित के लिए  <math>\operatorname{P}\!\left( A\mid \{\emptyset,\Omega\} \right) = \operatorname{P}(A).</math> नियमबद्ध संभावना  स्थिर कार्य है।
* <math>\mathcal G= \{\emptyset,\Omega\}</math> तुच्छ सिग्मा बीजगणित के लिए  <math>\operatorname{P}\!\left( A\mid \{\emptyset,\Omega\} \right) = \operatorname{P}(A).</math> नियमबद्ध संभावना  स्थिर कार्य है।
* अगर <math>A\in \mathcal{G}</math>,  तब <math>\operatorname{P}(A\mid\mathcal{G})=1_A</math> संकेतक फ़ंक्शन (नीचे परिभाषित) होता है।
* यदि <math>A\in \mathcal{G}</math>,  तब <math>\operatorname{P}(A\mid\mathcal{G})=1_A</math> संकेतक फ़ंक्शन (नीचे परिभाषित) होता है।


मूल्यवान यादृच्छिक चर <math>X : \Omega \to E</math>  हो <math>(E, \mathcal{E})</math>- प्रत्येक के लिए <math>B \in \mathcal{E}</math>, परिभाषित करना है। <math display="block">\mu_{X \, | \, \mathcal{G}} (B \, |\, \mathcal{G}) = \mathrm{P} (X^{-1}(B) \, | \, \mathcal{G}).</math>किसी के लिए <math>\omega \in \Omega</math>, कार्यक्रम <math>\mu_{X \, | \mathcal{G}}(\cdot \, | \mathcal{G}) (\omega) : \mathcal{E} \to \mathbb{R}</math> नियमबद्ध अपेक्षा कहा जाता है, <math>X</math> नियमबद्ध संभाव्यता वितरण की परिभाषा <math>\mathcal{G}</math> में दिया गया, यदि यह संभाव्यता माप <math>(E, \mathcal{E})</math> है, तो इसे नियमित नियमबद्ध संभाव्यता कहा जाता है।
मूल्यवान यादृच्छिक चर <math>X : \Omega \to E</math>  हो <math>(E, \mathcal{E})</math>- प्रत्येक के लिए <math>B \in \mathcal{E}</math>, परिभाषित करना है। <math display="block">\mu_{X \, | \, \mathcal{G}} (B \, |\, \mathcal{G}) = \mathrm{P} (X^{-1}(B) \, | \, \mathcal{G}).</math>किसी के लिए <math>\omega \in \Omega</math>, कार्यक्रम <math>\mu_{X \, | \mathcal{G}}(\cdot \, | \mathcal{G}) (\omega) : \mathcal{E} \to \mathbb{R}</math> नियमबद्ध अपेक्षा कहा जाता है, <math>X</math> नियमबद्ध संभाव्यता वितरण की परिभाषा <math>\mathcal{G}</math> में दिया गया, यदि संभाव्यता माप <math>(E, \mathcal{E})</math> है, तो इसे नियमित नियमबद्ध संभाव्यता कहा जाता है।


वास्तविक-मूल्यवान यादृच्छिक चर के लिए प्रत्येक नियमबद्ध संभाव्यता वितरण नियमित है।<ref>[[#billingsley95|Billingsley (1995)]], p. 439</ref> इस विषय में लगभग निश्चित रूप से <math>E[X \mid \mathcal{G}] = \int_{-\infty}^\infty x \, \mu(d x, \cdot)</math>होते है।
वास्तविक-मूल्यवान यादृच्छिक चर के लिए प्रत्येक नियमबद्ध संभाव्यता वितरण नियमित है।<ref>[[#billingsley95|Billingsley (1995)]], p. 439</ref> इस विषय में लगभग निश्चित रूप से <math>E[X \mid \mathcal{G}] = \int_{-\infty}^\infty x \, \mu(d x, \cdot)</math>होते है।


=== नियमबद्ध अपेक्षा से संबंध ===
=== नियमबद्ध अपेक्षा से संबंध ===
Line 83: Line 83:


:<math>\operatorname{E}(\mathbf{1}_A) = \operatorname{P}(A). \; </math>
:<math>\operatorname{E}(\mathbf{1}_A) = \operatorname{P}(A). \; </math>
<math>A</math> दिया  <math>\sigma</math>-मैदान <math>\mathcal{G} \subseteq \mathcal{F}</math>, नियमबद्ध संभावना <math> \operatorname{P}(A\mid\mathcal{G})</math> के लिए संकेतक फ़ंक्शन की [[सशर्त अपेक्षा|नियमबद्ध अपेक्षा]] का <math>A</math> संस्करण है।
<math>A</math> दिया  <math>\sigma</math>-फील्ड <math>\mathcal{G} \subseteq \mathcal{F}</math>, नियमबद्ध संभावना <math> \operatorname{P}(A\mid\mathcal{G})</math> के लिए संकेतक फ़ंक्शन की [[सशर्त अपेक्षा|नियमबद्ध अपेक्षा]] का <math>A</math> संस्करण है।


:<math>\operatorname{P}(A\mid\mathcal{G}) = \operatorname{E}(\mathbf{1}_A\mid\mathcal{G}) \; </math>
:<math>\operatorname{P}(A\mid\mathcal{G}) = \operatorname{E}(\mathbf{1}_A\mid\mathcal{G}) \; </math>

Revision as of 11:36, 24 May 2023

संभाव्यता सिद्धांत एवं सांख्यिकी में, दो संयुक्त संभाव्यता वितरण यादृच्छिक चर दिए गए हैं एवं , की नियमबद्ध संभाव्यता वितरण दिया गया का संभाव्यता वितरण है। जब विशेष मान के रूप में जाना जाता है, कुछ स्थितियों में नियमबद्ध संभावनाओं को अनिर्दिष्ट मान वाले कार्यों के रूप में व्यक्त किया जा सकता है। जब दोनों एवं श्रेणीबद्ध चर होते हैं, नियमबद्ध संभावना सारणी सामान्यतः का प्रतिनिधित्व करने के लिए उपयोग की जाती है। नियमबद्ध वितरण यादृच्छिक चर के सीमांत वितरण के विपरीत है, जो कि अन्य चर के मान के संदर्भ के बिना इसका वितरण होता है।

यदि का नियमबद्ध वितरण दिया गया सतत वितरण होता है, तो इसके संभाव्यता घनत्व फंक्शन को नियमबद्ध घनत्व फंक्शन के रूप में जाना जाता है।[1] नियमबद्ध वितरण के गुण, जैसे क्षण (गणित), प्रायः नियमबद्ध माध्य एवं नियमबद्ध भिन्नता जैसे संबंधित नामों से संदर्भित होते हैं।

अधिक सामान्यतः दो से अधिक चर के समूह के उपसमुच्चय के नियमबद्ध वितरण का उल्लेख कर सकते हैं; यह नियमबद्ध वितरण शेष सभी चरों के मूल्यों पर आकस्मिक है, एवं अधिक चर उपसमुच्चय में सम्मिलित होते हैं, तो यह नियमबद्ध वितरण सम्मिलित चरों का नियमबद्ध संयुक्त वितरण होता है।

नियमबद्ध असतत वितरण

असतत यादृच्छिक चर के लिए, संभाव्यता द्रव्यमान फंक्शन दिया गया, इसकी परिभाषा के अनुसार लिखा जा सकता है।

होने के कारण भाजक में यह केवल गैर-शून्य के लिए परिभाषित किया गया है (इसलिए जटिलता से सकारात्मक) संभाव्यता वितरण के साथ संबंध एवं दिया गया है।

उदाहरण

मेले के रोल एवं die पर विचार करने पर, यदि संख्या सम है (अर्थात, 2, 4, या 6) एवं अन्यथा, इसके अतिरिक्त, यदि संख्या अभाज्य है (अर्थात, 2, 3, या 5) एवं है।

D 1 2 3 4 5 6
X 0 1 0 1 0 1
Y 0 1 1 0 1 0

बिना नियम संभावना है कि 3/6 = 1/2 है (चूंकि डाइस के छह संभावित रोल हैं, जिनमें से तीन सम हैं), जबकि संभावना है कि नियमबद्ध 1/3 है (चूँकि तीन संभावित अभाज्य संख्याएँ हैं - 2, 3, एवं 5 - जिनमें से सम है)।

नियमबद्ध निरंतर वितरण

इसी प्रकार निरंतर यादृच्छिक चर के लिए, नियमबद्ध प्रायिकता घनत्व फंक्शन मूल्य की घटना को देखते हुए को रूप में लिखा जा सकता है।[2]

जहाँ का संयुक्त वितरण एवं देता है, जबकि के लिए सीमांत घनत्व देता है। के साथ ही इस विषय में यह आवश्यक होता है। संभाव्यता वितरण के साथ संबंध द्वारा दिया गया है।

सतत यादृच्छिक चर के नियमबद्ध वितरण की अवधारणा उतनी सरल नहीं है जितनी यह लग सकती है, बोरेल का विरोधाभास दर्शाता है कि नियमबद्ध संभाव्यता घनत्व कार्यों को समन्वय परिवर्तनों के अनुसार अपरिवर्तनीय नहीं होना चाहिए।

उदाहरण

द्विपक्षीय सामान्य संयुक्त संभाव्यता वितरण घनत्व फलन या द्रव्यमान फलन

आलेख यादृच्छिक चर के लिए द्विचर सामान्य वितरण एवं दिखाता है, वितरण देखने के लिए नियमबद्ध रेखा की कल्पना कर सकता है, में विमान (ज्यामिति), एवं उस रेखा वाले विमान की कल्पना करें, एवं इसके लंबवत विमान संयुक्त सामान्य घनत्व के साथ उस विमान का अंतःखंड, प्रतिच्छेदन के अनुसार इकाई क्षेत्र देने के लिए पुन: स्केल किया गया, प्रासंगिक नियमबद्ध घनत्व है।


स्वतंत्रता से संबंध

यादृच्छिक चर सांख्यिकीय स्वतंत्रता , हैं, यदि एवं का नियमबद्ध वितरण दिया गया है, के सभी संभव प्राप्तियों के लिए के बिना नियम वितरण के समान असतत होता है, यादृच्छिक चर के लिए इसका अर्थ है, प्रत्येक संभव के लिए एवं के साथ . निरंतर यादृच्छिक चर के लिए एवं , संयुक्त घनत्व फंक्शन होने का अर्थ है, सभी संभव के लिए एवं के साथ होता है।

गुण

के कार्य के रूप में देखा जाता है, , प्रायिकता द्रव्यमान फलन है एवं इसलिए सभी का योग 1 है। के कार्य के रूप में देखा गया, यह संभावना कार्य है, जिससे सभी का योग हो 1 नहीं होना चाहिए।

    

इसके अतिरिक्त, संयुक्त वितरण के सीमांत को संबंधित नियमबद्ध वितरण की अपेक्षा के रूप में व्यक्त किया जा सकता है। उदाहरण के लिए, है।

माप-सैद्धांतिक सूत्रीकरण

होने में संभाव्यता स्थान है, a -फ़ील्ड इन . दिया गया , रैडॉन-निकोडिम प्रमेय का तात्पर्य है कि [3] a - मापने योग्य यादृच्छिक चर , नियमबद्ध संभाव्यता कहा जाता है, जैसे कि

प्रत्येक के लिए इस प्रकार के यादृच्छिक चर को प्रायिकता शून्य के समूह तक विशिष्ट रूप से परिभाषित किया गया है। नियमबद्ध संभाव्यता को नियमित नियमबद्ध संभावना कहा जाता है यदि पर संभावना प्रविधि है सभी के लिए होता है।

विशेष स्थितियां:

  • तुच्छ सिग्मा बीजगणित के लिए नियमबद्ध संभावना स्थिर कार्य है।
  • यदि , तब संकेतक फ़ंक्शन (नीचे परिभाषित) होता है।

मूल्यवान यादृच्छिक चर हो - प्रत्येक के लिए , परिभाषित करना है।

किसी के लिए , कार्यक्रम नियमबद्ध अपेक्षा कहा जाता है, नियमबद्ध संभाव्यता वितरण की परिभाषा में दिया गया, यदि संभाव्यता माप है, तो इसे नियमित नियमबद्ध संभाव्यता कहा जाता है।

वास्तविक-मूल्यवान यादृच्छिक चर के लिए प्रत्येक नियमबद्ध संभाव्यता वितरण नियमित है।[4] इस विषय में लगभग निश्चित रूप से होते है।

नियमबद्ध अपेक्षा से संबंध

किसी भी घटना के लिए , सूचक फंक्शन को परिभाषित करें:

जो यादृच्छिक चर है। ध्यान दें कि इस यादृच्छिक चर की अपेक्षा स्वयं A की प्रायिकता के समान है।

दिया -फील्ड , नियमबद्ध संभावना के लिए संकेतक फ़ंक्शन की नियमबद्ध अपेक्षा का संस्करण है।

नियमित नियमबद्ध संभाव्यता के संबंध में यादृच्छिक चर की अपेक्षा इसकी नियमबद्ध अपेक्षा के समान होता है।

यह भी देखें

संदर्भ

उद्धरण

  1. Ross, Sheldon M. (1993). संभाव्यता मॉडल का परिचय (Fifth ed.). San Diego: Academic Press. pp. 88–91. ISBN 0-12-598455-3.
  2. Park,Kun Il (2018). संचार के लिए अनुप्रयोगों के साथ संभाव्यता और स्टोकास्टिक प्रक्रियाओं की बुनियादी बातों. Springer. ISBN 978-3-319-68074-3.
  3. Billingsley (1995), p. 430
  4. Billingsley (1995), p. 439

स्रोत

श्रेणी:संभाव्यता वितरण का सिद्धांत श्रेणी: नियमबद्ध संभावना