विकासशील सतह: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 99: | Line 99: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 27/11/2022]] | [[Category:Created On 27/11/2022]] | ||
[[Category:Vigyan Ready]] |
Revision as of 10:51, 26 May 2023
गणित में, विकसित करने योग्य सतह (या टॉर्स: अप्रचलित) शून्य गाऊसी वक्रता के साथ एक समतल सतह है। यह एक ऐसी सतह है जिसे विरूपण के बिना एक तल पर समतल किया जा सकता है (अर्थात इसे बिना तनाव या संपीड़न के बंकित किया जा सकता है)। इसके विपरीत, यह एक सतह है जिसे एक तल (अर्थात "वलन", "बंकन", "शिरोघूर्णन", "कर्तन" और/या "सरेस") को बदलकर बनाया जा सकता है। तीन आयामों में सभी विकास योग्य सतहें (लेकिन इसके विपरीत नहीं) रेखित सतहें हैं। चार आयामी समष्टि में विकसित करने योग्य सतहें हैं जिन्हे रेखित नहीं किया जाता है।[1]
तलों के एकल पैरामीटर वर्ग के आच्छादन (गणित) को एक विकसित करने योग्य सतह कहा जाता है।
विवरण
विकासशील सतहों को त्रि-आयामी समष्टि में सिद्ध किया जा सकता है जिनमें सम्मिलित हैं:
- बेलन (ज्यामिति) और, अधिक सामान्य रूप से, सामान्यीकृत बेलन; इसका अनुप्रस्थ परिच्छेद (ज्यामिति) कोई भी समतल फलन वक्र हो सकता है
- शंकु (ज्यामिति) और, अधिक सामान्यतः, शंक्वाकार सतहें; शीर्ष से दूर (ज्यामिति)
- ओलॉइड और स्फेरिकॉन ठोस (ज्यामिति) पदार्थों के एक विशेष वर्ग के सदस्य हैं जो एक समतल तल पर शिरोघूर्णन पर अपनी पूरी सतह विकसित कर लेते हैं।
- तल (सामान्य); जिसे एक बेलन के रूप में देखा जा सकता है जिसका परिच्छेद (गणित) एक रेखा है
- स्पर्शरेखा विकास योग्य सतहें; जो एक स्थानिक वक्र की स्पर्शरेखा रेखाओं का विस्तार करके निर्मित होते हैं।
- वृतज ठोस-वलय में एक दूरीक है जिसके अंतर्गत इसे विकसित किया जा सकता है, जिसे नैश अंत:स्थापन प्रमेय द्वारा त्रि-आयामी समष्टि में अंत:स्थापन किया जा सकता है[2] और दो वृत्तों के कार्तीय गुणन के रूप में चार आयामों में एक सरल प्रतिनिधित्व है और क्लिफर्ड वृतज ठोस-वलय भी देखें।
औपचारिक रूप से, गणित में, एक विकसित करने योग्य सतह शून्य गॉसियन वक्रता वाली सतह होती है। इसका एक परिणाम यह है कि 3D-समष्टि में सन्निहित सभी विकास योग्य सतहें रेखित सतहें हैं हालांकि अतिपरवलयज रेखज सतहों के उदाहरण हैं जो विकास योग्य नहीं हैं। इस वजह से, समष्टि में एक सीधी रेखा को स्थानांतरित करके बनाई गई सतह के रूप में कई विकासशील सतहें वैज्ञानिक दृश्य हो सकती हैं। उदाहरण के लिए, एक रेखा के एक अंत-बिंदु (ज्यामिति) को स्थिर रखते हुए एक शंकु का निर्माण किया जाता है, जबकि दूसरे अंत-बिंदु को एक वृत्त में ले जाया जाता है।
अनुप्रयोग
विकासशील सतहों के कई व्यावहारिक अनुप्रयोग हैं।
विकास योग्य तंत्र ऐसे तंत्र हैं जो एक विकसित करने योग्य सतह के अनुरूप होते हैं और सतह से गति (परिनियोजित) प्रदर्शित कर सकते हैं।[3][4]
कई मानचित्रीय अनुमानों में पृथ्वी को एक विकसित करने योग्य सतह पर प्रक्षेपित करना और फिर सतह को समतल पर एक क्षेत्र में अनियंत्रित करना सम्मिलित है।
चूंकि विकास योग्य सतहों का निर्माण एक समतल शीट को मोड़कर किया जा सकता है, वे शीट धातु, कार्डबोर्ड और प्लाईवुड से वस्तुओं के निर्माण में भी महत्वपूर्ण हैं। एक उद्योग जो बड़े पैमाने पर विकसित सतहों का उपयोग करता है वह जहाज निर्माण है।[5]
गैर-विकसित करने योग्य सतह
अधिकांश समतल सतहें (और सामान्य रूप से अधिकांश सतहें) विकास योग्य सतहें नहीं हैं। गैर-विकासशील सतहों को विभिन्न रूप से द्वैत वक्रता, दोगुनी वक्रित, यौगिक वक्रता, गैर-शून्य गॉसियन वक्रता आदि के रूप में संदर्भित किया जाता है।
सबसे अधिक उपयोग की जाने वाली गैर-विकासशील सतहों में से कुछ हैं:
- गोले किसी भी दूरीक के अंतर्गत विकसित करने योग्य सतह नहीं हैं क्योंकि उन्हें एक समतल पर अनियंत्रित नहीं किया जा सकता है।
- कुंडलिनीरूप एक रेखज सतह है - लेकिन ऊपर उल्लिखित रेखज सतहों के विपरीत, यह एक विकसित करने योग्य सतह नहीं है।
- अतिपरवलयिक परवलयज और अतिपरवलयज आंशिक अलग दोहरी रेखज सतहें हैं - लेकिन ऊपर वर्णित रेखज सतहों के विपरीत, कोई भी एक विकसित करने योग्य सतह नहीं है।
गैर-विकास योग्य सतहों के अनुप्रयोग
कई ग्रिडशेल्स और तन्य संरचनाएं और इसी तरह के निर्माण (किसी भी) दोगुने वक्रित रूप का उपयोग करके सामर्थ्य प्राप्त करते हैं।
यह भी देखें
- विकास (अंतर ज्यामिति)
- विकास योग्य बेलन
संदर्भ
- ↑ Hilbert, David; Cohn-Vossen, Stephan (1952), Geometry and the Imagination (2nd ed.), New York: Chelsea, pp. 341–342, ISBN 978-0-8284-1087-8
- ↑ Borrelli, V.; Jabrane, S.; Lazarus, F.; Thibert, B. (April 2012), "Flat tori in three-dimensional space and convex integration", Proceedings of the National Academy of Sciences, 109 (19): 7218–7223, doi:10.1073/pnas.1118478109, PMC 3358891, PMID 22523238.
- ↑ "विकास योग्य तंत्र | विकास योग्य तंत्र के बारे में". compliantmechanisms (in English). Retrieved 2019-02-14.
- ↑ Howell, Larry L.; Lang, Robert J.; Magleby, Spencer P.; Zimmerman, Trent K.; Nelson, Todd G. (2019-02-13). "विकास योग्य सतहों पर विकास योग्य तंत्र". Science Robotics (in English). 4 (27): eaau5171. doi:10.1126/scirobotics.aau5171. ISSN 2470-9476. PMID 33137737.
- ↑ Nolan, T. J. (1970), Computer-Aided Design of Developable Hull Surfaces, Ann Arbor: University Microfilms International
इस पेज में लापता आंतरिक लिंक की सूची
- चार आयामी समष्टि
- अंक शास्त्र
- गॉसियन वक्रता
- समतलता (गणित)
- तल (गणित)
- लिफाफा (गणित)
- घन ज्यामिति)
- शीर्ष (ज्यामिति)
- रोलिंग
- त्रि-आयामी समष्टि
- रेखा (गणित)
- स्पर्शरेखा विकास योग्य
- घेरा
- वैज्ञानिक दर्शन
- विकासशील तंत्र
- उत्पादन
- धातू की चादर
- नक्शा अनुमान
- अतिशयोक्तिपूर्ण परवलयज
- वृत्त
- तन्यता संरचना
- विकासशील रोलर