बीरेशनल ज्यामिति: Difference between revisions
(→⊗kΩ1) |
|||
Line 57: | Line 57: | ||
[[कोडैरा ग्राउंड सिय्योन|कोडैरा आयाम]] एक मौलिक द्विवार्षिक अपरिवर्तनीय है, जो प्लुरिजेनेरा P<sub>''d''</sub> के विकास को मापता है, क्योंकि d अनंत तक जाता है। कोडैरा आयाम आयाम n की सभी विविधताओ को कोडैरा आयाम −∞, 0, 1, ..., या n , {{nowrap|''n'' + 2}} प्रकारों में विभाजित करता है। यह विभिन्न प्रकार की जटिलता का एक उपाय है, जिसमें प्रक्षेपी समष्टि कोडैरा आयाम -∞ है। सबसे जटिल विविधताए वे हैं जिनके कोडैरा आयाम उनके आयाम n के बराबर हैं, जिन्हें [[कोडैरा आयाम|सामान्य प्रकार]] की विविधताए कहा जाता है। | [[कोडैरा ग्राउंड सिय्योन|कोडैरा आयाम]] एक मौलिक द्विवार्षिक अपरिवर्तनीय है, जो प्लुरिजेनेरा P<sub>''d''</sub> के विकास को मापता है, क्योंकि d अनंत तक जाता है। कोडैरा आयाम आयाम n की सभी विविधताओ को कोडैरा आयाम −∞, 0, 1, ..., या n , {{nowrap|''n'' + 2}} प्रकारों में विभाजित करता है। यह विभिन्न प्रकार की जटिलता का एक उपाय है, जिसमें प्रक्षेपी समष्टि कोडैरा आयाम -∞ है। सबसे जटिल विविधताए वे हैं जिनके कोडैरा आयाम उनके आयाम n के बराबर हैं, जिन्हें [[कोडैरा आयाम|सामान्य प्रकार]] की विविधताए कहा जाता है। | ||
=== ⊗<sup>kΩ<sup><sup>1</sup> | === ⊗<sup>kΩ<sup><sup>1</sup> का योग और कुछ हॉज नंबर === | ||
आम तौर पर अधिक, {{nowrap|''r'' ≥ 0}} के साथ स्पर्शरेखा बंडल Ω<sup>1</sup> की r-वें प्रदिश शक्ति के किसी भी प्राकृतिक योग | आम तौर पर अधिक, {{nowrap|''r'' ≥ 0}} के साथ स्पर्शरेखा बंडल Ω<sup>1</sup> की r-वें प्रदिश शक्ति के किसी भी प्राकृतिक योग | ||
:<math>E(\Omega^1) = \bigotimes^k \Omega^1</math> | :<math>E(\Omega^1) = \bigotimes^k \Omega^1</math> | ||
Line 65: | Line 63: | ||
:<math>h^{p,0} = H^0(X,\Omega^p)</math> | :<math>h^{p,0} = H^0(X,\Omega^p)</math> | ||
X के द्विवार्षिक अपरिवर्तनीय हैं। (अधिकांश अन्य हॉज नंबर h<sup>p,q</sup> द्विवार्षिक अपरिवर्तनीय नहीं हैं, जैसा कि | X के द्विवार्षिक अपरिवर्तनीय हैं। (अधिकांश अन्य हॉज नंबर h<sup>p,q</sup> द्विवार्षिक अपरिवर्तनीय नहीं हैं, जैसा कि विस्फोट करके दिखाया गया है।) | ||
=== समतल प्रक्षेपी विविधताओ का मूल समूह === | === समतल प्रक्षेपी विविधताओ का मूल समूह === |
Revision as of 22:09, 29 May 2023
गणित में, द्विवार्षिक ज्यामिति बीजगणितीय ज्यामिति का एक क्षेत्र है जिसका लक्ष्य यह निर्धारित करना है कि दो बीजगणितीय प्रकार निम्न-आयामी उपसमुच्चय के बाहर समरूप हैं। यह मानचित्रणों का अध्ययन करने के बराबर है जो बहुपदों के बजाय परिमेय फलनो द्वारा दिया जाता है, तथा मानचित्र परिभाषित करने में विफल हो सकता है जहां परिमेय फलनो में स्तंभ होते हैं।
द्विवार्षिक मानचित्र
परिमेय मानचित्र
एक विविध से एक परिमेय मानचित्रण (जिसे अलघुकरणीय समझा जाता है) दूसरी विविध के लिए , जिसे एक वियोजक तीर X ⇢Y के रूप में लिखा गया है, उसको एक अरिक्त- विवृत उपसमुच्चय से के आकारिकी के रूप में परिभाषित किया गया है। बीजगणितीय ज्यामिति में प्रयुक्त जरिस्की सांस्थिति विज्ञान की परिभाषा के अनुसार, एक अरिक्त- विवृत उपसमुच्चय में हमेशा सघन होता है , वास्तव में एक निम्न-आयामी उपसमुच्चय का पूरक होता है। वास्तव में, एक परिमेय मानचित्र को परिमेय फलनो का उपयोग करके निर्देशांक में लिखा जा सकता है।
द्विवार्षिक मानचित्र
X से Y तक का एक द्विवार्षिक मानचित्र एक परिमेय मानचित्र f : X ⇢ Y ऐसा है जैसे कि एक परिमेय मानचित्र Y ⇢ X f का व्युत्क्रम है। एक द्विवार्षिक मानचित्र एक समरूपता को X के एक गैर-रिक्त खुले उपसमुच्चय से वाई के एक गैर-रिक्त खुले उपसमुच्चय के लिए प्रेरित करता है। इस मामले में, X और वाई को 'द्विवार्षिक' या 'द्विवार्षिक समकक्ष' कहा जाता है। बीजगणितीय शब्दों में, एक क्षेत्र k पर दो विविधताए द्विभाजित हैं और यदि उनके बीजगणितीय प्रकार के फलन क्षेत्र k के विस्तार क्षेत्रों के रूप में समरूपी हैं।
एक विशेष स्तिथि 'द्विवार्षिक आकारिता' है f : X → Y, जिसका अर्थ एक आकारिकी है जो द्विवार्षिक है। अर्थात्, f हर जगह परिभाषित है, लेकिन इसका व्युत्क्रम नहीं हो सकता है। आमतौर पर, ऐसा इसलिए होता है क्योंकि एक द्विवार्षिक आकारिता X की कुछ उप-विविधताओ को वाई में इंगित करता है।
द्विवार्षिक तुल्यता और परिमेयता
एक विविधता X को 'परिमेय विविधता' कहा जाता है यदि यह किसी आयाम के सजातीयउपसमष्टि (या समतुल्य,प्रक्षेपण स्थान ) के लिए द्विवार्षिक है। परिमेयता एक बहुत ही प्राकृतिक संपत्ति है, इसका मतलब है कि X ऋण कुछ निम्न-आयामी उपसमुच्चय को सजातीयउपसमष्टि ऋण कुछ निम्न-आयामी उपसमुच्चय से पहचाना जा सकता है।
समतल शंकु की द्विवार्षिक तुल्यता
उदाहरण के लिए, परिबंध तल में समीकरण वाला वृत्त एक परिमेय वक्र है, क्योंकि
द्वारा दिया गया एक परिमेय मानचित्र f : ⇢ X है, जिसका परिमेय व्युत्क्रम g: X ⇢
- द्वारा दिया गया है।
एक परिमेय संख्या के साथ मानचित्र f को लागू करने से पाइथैगोरसी त्रिक का एक व्यवस्थित निर्माण मिलता है।
परिमेय मानचित्र उस स्थान पर परिभाषित नहीं है जहाँ है। तो, जटिल सजातीय पंक्ति , खुले उपसमुच्चय , पर एक आकारिकी है। इसी तरह, परिमेय मानचित्र g : X ⇢ बिंदु (0,−1) में पर परिभाषित नहीं है।
स्मूथ चतुष्कोणों और Pn की द्विवार्षिक तुल्यता
अधिक आम तौर पर, त्रिविम प्रक्षेप द्वारा किसी भी आयाम n का एक स्मूथ चतुर्भुज (डिग्री 2) ऊनविम पृष्ठ X परिमेय है। (X के लिए एक क्षेत्र k ऊपर एक चतुर्भुज, X को एक k-परिमेय बिंदु माना जाना चाहिए, यदि k बीजगणितीय रूप से बंद है तो यह स्वचालित है।) त्रिविम प्रक्षेपण को परिभाषित करने के लिए, p को X में एक बिंदु होने दें। फिर X से p और q के माध्यम से रेखा में X में एक बिंदु q भेजकर p के माध्यम से X प्रक्षेपी समष्टि तक एक द्विवार्षिक मानचित्र दिया जाता है। यह एक द्विवार्षिक तुल्यता है, लेकिन विविधताओ की समरूपता नहीं है, क्योंकि यह परिभाषित करने में विफल रहता है q = p (और व्युत्क्रम नक्शा उन पंक्तियों पर परिभाषित करने में विफल रहता है जो p के माध्यम से X में समाहित हैं)।
चतुष्कोणीय सतह की द्विवार्षिक तुल्यता
सेग्रे अंत: स्थापन एक अंत: स्थापन देता है जो
द्वारा दिया गया है। छवि चतुर्भुज सतह में है। यह एक और प्रमाण देता है कि यह चतुर्भुज सतह परिमेय है, क्योंकि स्पष्ट रूप से परिमेय है, तथा के लिए एक खुला उपसमुच्चय समरूपी है।
न्यूनतम प्रारूप और विलक्षणताओं का संकल्प
प्रत्येक बीजगणितीय विविधता एक प्रक्षेपीय विविधता (चाउ की लेम्मा) के लिए द्विपक्षीय है। इसलिए, द्विवार्षिक वर्गीकरण के प्रयोजनों के लिए, यह केवल प्रक्षेपी विविधताओ के साथ काम करने के लिए पर्याप्त है, और यह आमतौर पर सबसे सुविधाजनक विन्यास है।
विलक्षणताओं के समाधान पर हिरोनाका की 1964 की प्रमेय बहुत गहरी है, विशेषता 0 (जैसे जटिल संख्या) के एक क्षेत्र में, प्रत्येक विविधता एक स्मूथ प्रक्षेप्य विविधता के लिए द्विवार्षिक है। यह देखते हुए, यह द्विवार्षिक तुल्यता तक समतल प्रक्षेप्य विविधताओ को वर्गीकृत करने के लिए पर्याप्त है।
आयाम 1 में, यदि दो चिकने प्रक्षेपी वक्र द्विवार्षिक हैं, तो वे समरूपी हैं। लेकिन यह विस्फोट निर्माण से कम से कम 2 आयाम में विफल रहता है। विस्फोट करके, कम से कम 2 आयाम की प्रत्येक समतल प्रक्षेपी विविधता अनंत रूप से कई बड़ी विविधताओ के लिए द्विभाजित है, उदाहरण के लिए बड़ी बेट्टी संख्याओं के साथ।
यह न्यूनतम प्रारूप के विचार की ओर जाता है, क्या प्रत्येक द्विवार्षिक तुल्यता वर्ग में एक अद्वितीय सरलतम विविधता है ? आधुनिक परिभाषा यह है कि यदि विहित रेखा बंडल KX में X में प्रत्येक वक्र पर गैर-नकारात्मक डिग्री है तो एक प्रक्षेपी विविध X 'न्यूनतम' है दूसरे शब्दों में, KX एनईएफ पंक्ति बंडल है। यह जांचना आसान है कि विस्फोटित विविधताए कभी भी न्यूनतम नहीं होती हैं।
यह धारणा बीजगणितीय सतहों (आयाम 2 की विविधताओ) के लिए पूरी तरह से काम करती है। आधुनिक शब्दों में, 1890-1910 से बीजगणितीय ज्यामिति के इतालवी स्कूल का एक केंद्रीय परिणाम, सतहों के वर्गीकरण का हिस्सा है, यह है कि प्रत्येक सतह X किसी वक्र C के लिए या न्यूनतम सतह Y के उत्पाद के लिए द्विवार्षिक है।[1] दो स्थितिया परस्पर अनन्य हैं, और यदि मौजूद है तो Y अद्वितीय है। जब Y मौजूद होता है, तो इसे X का न्यूनतम प्रारूप कहा जाता है।
द्विवार्षिक अपरिवर्तनशीलताए
सबसे पहले, यह स्पष्ट नहीं है कि कैसे दिखाया जाए कि कोई बीजगणितीय विविधताए हैं जो परिमेय नहीं हैं। इसे साबित करने के लिए, बीजगणितीय विविधताओ के कुछ द्विवार्षिक अपरिवर्तनशीलताओं की जरूरत है। एक द्विवार्षिक अपरिवर्तनशीलता किसी भी प्रकार की संख्या, रिंग, आदि है जो समान है, या समरूपी है, तथा सभी विविधताओ के लिए जो कि द्विवार्षिक समकक्ष हैं।
प्लुरिजेनेरा
द्विवार्षिक निश्चर का एक उपयोगी समुच्चय प्लुरिजेनेरा है। आयाम n की एक समतल विविध X के विहित बंडल का अर्थ यह है कि n-रूपों का रेखा बंडल KX = Ωn, जो कि X के स्पर्शरेखा बंडल की nवीं बाहरी शक्ति है। एक पूर्णांक d के लिए, KX की dवी प्रदिश शक्ति फिर से एक पंक्ति बंडल है। d ≥ 0 के लिए, वैश्विक वर्गों H0(X, KXd) के सदिश समष्टि में उल्लेखनीय संपत्ति है जो एक द्विवार्षिक मानचित्र f : X ⇢ Y समतल प्रक्षेप्य विविधताओ के बीच एक समरूपता H0(X, KXd) ≅ H0(Y, KYd) को प्रेरित करता है।[2]
यदि d ≥ 0 के लिए, डीटीएच 'प्लुरिजेनस' Pd को सदिश समष्टि H0(X, KXd) के आयाम के रूप में परिभाषित करें, तो प्लूरिजेनेरा समतल प्रक्षेपी विविधताओ के लिए द्विवार्षिक आक्रमणकारी हैं। विशेष रूप से, यदि कोई प्लूरिजेनस Pd साथ d > 0 शून्य नहीं है, तो X परिमेय नहीं है।
कोडैरा आयाम
कोडैरा आयाम एक मौलिक द्विवार्षिक अपरिवर्तनीय है, जो प्लुरिजेनेरा Pd के विकास को मापता है, क्योंकि d अनंत तक जाता है। कोडैरा आयाम आयाम n की सभी विविधताओ को कोडैरा आयाम −∞, 0, 1, ..., या n , n + 2 प्रकारों में विभाजित करता है। यह विभिन्न प्रकार की जटिलता का एक उपाय है, जिसमें प्रक्षेपी समष्टि कोडैरा आयाम -∞ है। सबसे जटिल विविधताए वे हैं जिनके कोडैरा आयाम उनके आयाम n के बराबर हैं, जिन्हें सामान्य प्रकार की विविधताए कहा जाता है।
⊗kΩ1 का योग और कुछ हॉज नंबर
आम तौर पर अधिक, r ≥ 0 के साथ स्पर्शरेखा बंडल Ω1 की r-वें प्रदिश शक्ति के किसी भी प्राकृतिक योग
के लिए, वैश्विक वर्गों का सदिश समष्टि H0(X, E(Ω1)) समतल प्रक्षेप्य विविधताओ के लिए एक द्विवार्षिक अपरिवर्तनीय है। विशेष रूप से, हॉज नंबर
X के द्विवार्षिक अपरिवर्तनीय हैं। (अधिकांश अन्य हॉज नंबर hp,q द्विवार्षिक अपरिवर्तनीय नहीं हैं, जैसा कि विस्फोट करके दिखाया गया है।)
समतल प्रक्षेपी विविधताओ का मूल समूह
मूल समूह π1(X) समतल जटिल प्रक्षेपी विविधताओ के लिए एक द्विवार्षिक अपरिवर्तनीय है।
अब्रामोविच, कारू, मात्सुकी, और व्लोडार्कज़ीक (2002) द्वारा सिद्ध किया गया कमजोर गुणन प्रमेय कहता है कि दो समतल जटिल प्रक्षेपी विविधताओ के बीच किसी भी द्विवार्षिक मानचित्र को सूक्ष्म रूप से कई आवर्धित या समतल उप-विविधताओ के अवधमन में विघटित किया जा सकता है। यह जानना महत्वपूर्ण है, लेकिन यह निर्धारित करना अभी भी बहुत कठिन हो सकता है कि क्या दो समतल प्रक्षेपीय विविधताए द्विवार्षिक हैं।
उच्च आयामों में न्यूनतम प्रारूप
यदि विहित बंडल KX नेफ है तो प्रक्षेपी विविध X को 'न्यूनतम' कहा जाता है। X आयाम 2 के लिए, इस परिभाषा में समतल विविधताओ पर विचार करना पर्याप्त है। आयामों में कम से कम 3, न्यूनतम विविधताओ को कुछ हल्के विशिष्टताएं रखने की अनुमति दी जानी चाहिए, जिसके लिए KX अभी भी अच्छा व्यवहार करता है, इन्हें अंतिम विलक्षणताएँ कहा जाता है।
कहा जा रहा है कि, न्यूनतम प्रारूप अनुमान का अर्थ यह होगा कि हर विविध X या तो परिमेय वक्र से आच्छादित है या एक न्यूनतम विविधता Y के लिए द्विवार्षिक है। जब यह मौजूद होता है, तो Y को X का 'न्यूनतम प्रारूप' कहा जाता है।
न्यूनतम प्रारूप कम से कम 3 आयामों में अद्वितीय नहीं हैं, लेकिन कोई भी दो न्यूनतम विविधताए जो कि द्विवार्षिक हैं, वे बहुत करीब हैं। उदाहरण के लिए, वे कम से कम 2 सह आयाम के समरूपी बाहरी उपसमुच्चय हैं, और अधिक सटीक रूप से वे फ्लाप्स के अनुक्रम से संबंधित हैं। तो न्यूनतम प्रारूप अनुमान बीजगणितीय विविधताओ के द्विवार्षिक वर्गीकरण के बारे में मजबूत जानकारी देगा।
यह अनुमान मोरी द्वारा आयाम 3 में सिद्ध किया गया था।[3] उच्च आयामों में काफी प्रगति हुई है, हालांकि सामान्य समस्या बनी हुई है। विशेष रूप से, बिरकर, कैसिनी, हैकोन , और मैककर्नन (2010)[4] ने साबित किया कि विशेषता शून्य के क्षेत्र में सामान्य प्रकार की प्रत्येक विविध का एक न्यूनतम प्रारूप होता है।
अशासित विविधताए
एक विविध को अशासित कहा जाता है यदि यह परिमेय घटता से आच्छादित है। एक अशासित विविध में न्यूनतम प्रारूप नहीं होता है, लेकिन एक अच्छा प्रतिस्थापी होता है, बिरकर, कैसिनी, हैकॉन और मैककर्नन ने दिखाया कि विशेषता शून्य के क्षेत्र में प्रत्येक अशासित विविधता एक फानो फाइबर समष्टि के लिए द्विवार्षिक है।[lower-alpha 1] यह फ़ानो फाइबर समष्टि और (सबसे दिलचस्प विशेष मामले के रूप में) फ़ानो विविध के द्विवार्षिक वर्गीकरण की समस्या की ओर जाता है। परिभाषा के अनुसार, एक प्रक्षेपी विविध X 'फैनो' है यदि एंटीकैनोनिकल बंडल पर्याप्त है। फ़ानो विविधताओ को बीजगणितीय विविधताओ के रूप में माना जा सकता है जो प्रक्षेपी समष्टि के समान हैं।
आयाम 2 में, बीजगणितीय रूप से बंद क्षेत्र पर प्रत्येक फ़ानो विविध (जिसे डेल पेज़ो सतह के रूप में जाना जाता है) परिमेय है। 1970 के दशक में एक प्रमुख खोज यह थी कि आयाम 3 से शुरू होकर, कई फानो विविधताए हैं जो परिमेय नहीं हैं। विशेष रूप से, समतल घन 3-गुना क्लेमेंस-ग्रिफिथ्स (1972) द्वारा परिमेय नहीं है, और समतल क्वार्टिक 3-गुना इस्कोस्किख-मैनिन (1971) द्वारा परिमेय नहीं है। बहरहाल, यह निर्धारित करने की समस्या कि वास्तव में कौन सी फ़ानो विविधताए परिमेय हैं, हल होने से बहुत दूर हैं। उदाहरण के लिए, यह ज्ञात नहीं है कि में n ≥ 4 के साथ कोई समतल घनी अतिसतह है या नहीं जो परिमेय नहीं है।
द्विवार्षिक स्वचालन समूह
बीजगणितीय विविधताए व्यापक रूप से भिन्न होती हैं तथा उनके पास कितने द्विवार्षिक स्वचालन हैं। सामान्य प्रकार की हर विविध अत्यंत कठोर है, इस अर्थ में कि इसका द्विवार्षिक स्वचालन समूह परिमित है। दूसरे चरम पर, क्षेत्र k पर प्रक्षेपी समष्टि का द्विवार्षिक स्वचालन समूह, जिसे क्रेमोना समूह Crn(k) के रूप में जाना जाता है, n ≥ 2 के लिए बड़ा (एक मायने में, अनंत-आयामी) है। n = 2 के लिए, सम्मिश्र क्रेमोना समूह "द्विघात रूपांतरण"
- [x,y,z] ↦ [1/x, 1/y, 1/z]
द्वारा मैक्स नोथेर और गुइडो कास्टेलनुवो द्वारा के स्वचालन समूह के साथ उत्पन्न होता है। इसके विपरीत, n ≥ 3 में क्रेमोना समूह आयामों बहुत अधिक रहस्य है, जनित्र की कोई स्पष्ट स्थिति ज्ञात नहीं है।
- इस्कोविसिख-मैनिन (1971) ने दिखाया कि एक सुचारू क्वार्टिक 3-गुना का द्विवार्षिक स्वचालन समूह इसके स्वचालन समूह के बराबर है, जो परिमित है। इस अर्थ में, क्वार्टिक 3-गुना परिमेय होने से बहुत दूर हैं, क्योंकि एक परिमेय विविधता का द्विवार्षिक स्वचालन समूह बहुत बड़ा है। तब से कई अन्य फानो फाइबर स्थानों में "द्विवार्षिक दृढ़ता" की इस घटना की खोज की गई है।[citation needed]
अनुप्रयोग
द्विवार्षिक ज्यामिति ने ज्यामिति के अन्य क्षेत्रों में, विशेष रूप से बीजगणितीय ज्यामिति में पारंपरिक समस्याओं में अनुप्रयोगों को पाया है।
प्रसिद्ध रूप से न्यूनतम प्रारूप का उपयोग सामान्य प्रकार की विविध के मोडुली समष्टि के निर्माण करने के लिए जानोस कॉलर और निकोलस शेफर्ड-बैरन द्वारा किया गया था, जिसे अब केएसबी मोडुली समष्टि के रूप में जाना जाता है।[5]
द्विवार्षिक ज्यामिति ने हाल ही में काहलर-आइंस्टीन मापन के लिए सामान्य अस्तित्व परिणामों के माध्यम से फैनो विविध की के-स्थिरता के अध्ययन में , द्विवार्षिक प्रारूप पर गणना करके के-स्थिरता का परीक्षण करने के लिए फ़ानो विविध के सुस्पष्ट निश्चर के विकास में, और फ़ानो विविध के मोडुली समष्टि के निर्माण में महत्वपूर्ण अनुप्रयोगों को पाया है।[6] द्विवार्षिक ज्यामिति में महत्वपूर्ण परिणाम जैसे बिरकर के फ़ानो विविध की सीमा के प्रमाण का उपयोग मोडुली समष्टि के लिए अस्तित्व के परिणामों को साबित करने के लिए किया गया है।
यह भी देखें
उद्धरण
- ↑ Kollár & Mori 1998, Theorem 1.29..
- ↑ Hartshorne 1977, Exercise II.8.8..
- ↑ Mori 1988.
- ↑ Birkar et al. 2010.
- ↑ Kollár 2013.
- ↑ Xu 2021.
टिप्पणियाँ
- ↑ Birkar et al. (2010, Corollary 1.3.3), implies that every uniruled variety in characteristic zero is birational to a Fano fiber space, using the easier result that a uniruled variety X is covered by a family of curves on which KX has negative degree. A reference for the latter fact is Debarre (2001, Corollary 4.11) and Example 4.7(1).
संदर्भ
- Abramovich, Dan; Karu, Kalle; Matsuki, Kenji; Włodarczyk, Jarosław (2002), "Torification and factorization of birational maps", Journal of the American Mathematical Society, 15 (3): 531–572, arXiv:math/9904135, doi:10.1090/S0894-0347-02-00396-X, MR 1896232, S2CID 18211120
- Birkar, Caucher; Cascini, Paolo; Hacon, Christopher D.; McKernan, James (2010), "Existence of minimal models for varieties of log general type", Journal of the American Mathematical Society, 23 (2): 405–468, arXiv:math.AG/0610203, Bibcode:2010JAMS...23..405B, doi:10.1090/S0894-0347-09-00649-3, MR 2601039, S2CID 3342362
- Clemens, C. Herbert; Griffiths, Phillip A. (1972), "The intermediate Jacobian of the cubic threefold", Annals of Mathematics, Second Series, 95 (2): 281–356, CiteSeerX 10.1.1.401.4550, doi:10.2307/1970801, ISSN 0003-486X, JSTOR 1970801, MR 0302652
- Debarre, Olivier (2001). Higher-Dimensional Algebraic Geometry. Springer-Verlag. ISBN 978-0-387-95227-7. MR 1841091.
- Griffiths, Phillip; Harris, Joseph (1978). Principles of Algebraic Geometry. John Wiley & Sons. ISBN 978-0-471-32792-9. MR 0507725.
- Hartshorne, Robin (1977). Algebraic Geometry. Springer-Verlag. ISBN 978-0-387-90244-9. MR 0463157.
- Kollár, János (2013). "Moduli of varieties of general type". Handbook of moduli. Vol. 2. pp. 131–157. arXiv:1008.0621. ISBN 9781571462589. Zbl 1322.14006.
- Iskovskih, V. A.; Manin, Ju. I. (1971), "Three-dimensional quartics and counterexamples to the Lüroth problem", Matematicheskii Sbornik, Novaya Seriya, 86 (1): 140–166, Bibcode:1971SbMat..15..141I, doi:10.1070/SM1971v015n01ABEH001536, MR 0291172
- Kollár, János; Mori, Shigefumi (1998), Birational Geometry of Algebraic Varieties, Cambridge University Press, doi:10.1017/CBO9780511662560, ISBN 978-0-521-63277-5, MR 1658959
- Mori, Shigefumi (1988), "Flip theorem and the existence of minimal models for 3-folds", Journal of the American Mathematical Society, 1 (1): 117–253, doi:10.2307/1990969, ISSN 0894-0347, JSTOR 1990969, MR 0924704
- Xu, Chenyang (2021). "K-stability of Fano varieties: An algebro-geometric approach". Ems Surveys in Mathematical Sciences. 8: 265–354. doi:10.4171/EMSS/51. S2CID 204829174.