अबीजीय फलन: Difference between revisions
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
== परिभाषा == | == परिभाषा == | ||
औपचारिक रूप से, एक वास्तविक या सम्मिश्र चर {{mvar|z}} का एक विश्लेषणात्मक फलन {{math|''f'' (''z'')}} अबीजीय है यदि यह उस चर से बीजगणितीय रूप से स्वतंत्र है।<ref>M. Waldschmidt, ''[https://books.google.com/books?id=Wrj0CAAAQBAJ&printsec=frontcover#v=onepage&q=transcendental&f=false Diophantine approximation on linear algebraic groups]'', Springer (2000).</ref> यह कई चर के फलनों के लिए बढ़ाया जा सकता है। | |||
== इतिहास == | |||
अबीजीय फलनों साइन और कोसाइन को प्राचीन काल में भौतिक माप से सारणीबद्ध किया गया था, जैसा कि ग्रीस (हिप्पार्कस) और भारत (ज्य और कोटि-ज्या) में प्रमाणित है। टॉलेमी की तारों की तालिका का वर्णन करते हुए, साइन की तालिका के बराबर, ओलाफ पेडर्सन ने लिखा: | |||
{{quote|एक स्पष्ट अवधारणा के रूप में निरंतरता की गणितीय धारणा टॉलेमी के लिए अज्ञात है। वह, वास्तव में, इन कार्यों को निरंतर मानता है, जो उसकी अव्यक्त धारणा से प्रतीत होता है कि [[रैखिक प्रक्षेप]] की सरल प्रक्रिया द्वारा स्वतंत्र चर के किसी भी मूल्य के अनुरूप आश्रित चर का मान निर्धारित करना संभव है। | |||
The mathematical notion of continuity as an explicit concept is unknown to Ptolemy. That he, in fact, treats these functions as continuous appears from his unspoken presumption that it is possible to determine a value of the dependent variable corresponding to any value of the independent variable by the simple process of [[linear interpolation]].<ref>[[Olaf Pedersen]] (1974) ''Survey of the Almagest'', page 84, [[Odense University Press]] {{ISBN|87-7492-087-1}}</ref>}} | |||
इन वृत्तीय फलन की एक क्रांतिकारी समझ 17 वीं शताब्दी में हुई और 1748 में लिओनहार्ड यूलर द्वारा अनंत के विश्लेषण के परिचय में इसकी खोज की गई। 1647 में ग्रेगोइरे डी सेंट-विंसेंट द्वारा आयताकार हाइपरबोला {{math|1=''xy'' = 1}} के चतुर्भुज के माध्यम से इन प्राचीन '''अबीजीय फलनों''' को निरंतर फलनों के रूप में जाना जाता है, दो सहस्राब्दियों के बाद आर्किमिडीज़ ने पैराबोला (परवलय) के चतुर्भुज का उत्पादन किया था। | |||
इन | |||
हाइपरबोला के अंतर्गत क्षेत्र को सीमा के निरंतर अनुपात के लिए स्थिर क्षेत्र की प्रवर्धन संपत्ति के रूप में दिखाया गया था। [[अतिशयोक्तिपूर्ण लघुगणक]] फलन का वर्णन 1748 तक सीमित सेवा का था, जब लियोनहार्ड यूलर ने इसे उन फलनों से संबंधित किया था जहां एक निरंतर एक चर घातांक के लिए उठाया जाता है, जैसे कि घातीय फलन जहां निरंतर [[आधार (घातांक)]] e (गणितीय स्थिरांक) है। इन अबीजीय फलनों को शुरू करने और एक व्युत्क्रम फलन का अर्थ करने वाली आपत्ति संपत्ति को ध्यान में रखते हुए, [[प्राकृतिक]] लघुगणक के बीजगणितीय जोड़तोड़ के लिए कुछ सुविधा प्रदान की गई थी, भले ही यह बीजगणितीय फलन न हो। | हाइपरबोला के अंतर्गत क्षेत्र को सीमा के निरंतर अनुपात के लिए स्थिर क्षेत्र की प्रवर्धन संपत्ति के रूप में दिखाया गया था। [[अतिशयोक्तिपूर्ण लघुगणक]] फलन का वर्णन 1748 तक सीमित सेवा का था, जब लियोनहार्ड यूलर ने इसे उन फलनों से संबंधित किया था जहां एक निरंतर एक चर घातांक के लिए उठाया जाता है, जैसे कि घातीय फलन जहां निरंतर [[आधार (घातांक)]] e (गणितीय स्थिरांक) है। इन अबीजीय फलनों को शुरू करने और एक व्युत्क्रम फलन का अर्थ करने वाली आपत्ति संपत्ति को ध्यान में रखते हुए, [[प्राकृतिक]] लघुगणक के बीजगणितीय जोड़तोड़ के लिए कुछ सुविधा प्रदान की गई थी, भले ही यह बीजगणितीय फलन न हो। | ||
घातीय फलन लिखा है {{nowrap|<math> \exp (x) = e^x</math>.}} यूलर ने इसकी पहचान | घातीय फलन लिखा है {{nowrap|<math> \exp (x) = e^x</math>.}} यूलर ने इसकी पहचान अनंत श्रृंखला से की {{nowrap|<math display="inline">\sum_{k=0} ^{\infty} x^k / k ! </math>,}} जहाँ {{math|''k''!}} के भाज्य को दर्शाता है। | ||
इस श्रृंखला के सम और विषम पद cosh(x) और sinh(x) को दर्शाने वाले योग प्रदान करते हैं, ताकि {{nowrap|<math>e^x = \cosh x + \sinh x</math>.}} इन अनुवांशिक अतिपरवलयिक फलनों को ( | इस श्रृंखला के सम और विषम पद {{math|cosh(''x'')}} और {{math|sinh(''x'')}} को दर्शाने वाले योग प्रदान करते हैं, ताकि {{nowrap|<math>e^x = \cosh x + \sinh x</math>.}}। इन अनुवांशिक अतिपरवलयिक फलनों को श्रृंखला में {{math|(−1)<sup>''k''</sup>}} शुरू करके वृत्तीय फलन साइन और कोसाइन में परिवर्तित किया जा सकता है, जिसके परिणामस्वरूप वैकल्पिक श्रृंखला होती है। यूलर के बाद, गणितज्ञ [[जटिल संख्या|समिश्र संख्या]] अंकगणित में प्रायः यूलर के सूत्र के माध्यम से साइन और कोसाइन को लघुगणक और प्रतिपादक फलनों के उत्थान से संबंधित करने के लिए देखते हैं। | ||
== उदाहरण == | == उदाहरण == | ||
निम्नलिखित फलन अबीजीय हैं: | निम्नलिखित फलन अबीजीय हैं: | ||
<math display="block">f_1(x) = x^\pi | <math display="block">\begin{align} | ||
f_1(x) &= x^\pi \\[2pt] | |||
f_2(x) &= c^x \\[2pt] | |||
f_3(x) &= x^{x} \\ | |||
f_4(x) &= x^{\frac{1}{x}} =\sqrt[x]{x} \\[2pt] | |||
f_5(x) &= \log_c x \\[2pt] | |||
दूसरे फलन | f_6(x) &= \sin{x} | ||
\end{align}</math>दूसरे फलन <math>f_2(x)</math> के लिए, यदि हम <math>c</math> को प्राकृतिक लघुगणक के आधार <math>e</math> के बराबर समुच्चय करते हैं, तो हम पाते हैं कि <math>e^x</math> एक अबीजीय फलन है। इसी तरह, यदि हम <math>c</math> को <math>e</math> बराबर समुच्चय करते हैं तो हम पाते हैं कि <math>f_5(x) = \log_e x = \ln x</math> (यानी, प्राकृतिक लघुगणक) एक अबीजीय फलन है। | |||
== बीजगणितीय और अबीजीय फलन == | == बीजगणितीय और अबीजीय फलन == | ||
सबसे परिचित अबीजीय फलन लघुगणक, घातीय फलन (किसी भी गैर-तुच्छ आधार के साथ), त्रिकोणमितीय फलन और अतिपरवलयिक फलन और इन सभी के व्युत्क्रम फलन हैं। कम परिचित [[गणितीय विश्लेषण]] के [[विशेष कार्य|विशेष फलन]] हैं, जैसे कि [[गामा समारोह|गामा]], दीर्घवृत्तीय और [[जीटा समारोह|जीटा फलन]], जो सभी अबीजीय हैं। सामान्यीकृत हाइपरज्यामितीय फलन और [[बेसेल समारोह|बेसेल फलन]] फलन सामान्य रूप से अबीजीय हैं, परन्तु कुछ विशेष पैरामीटर मानों के लिए बीजगणितीय हैं। | |||
सबसे परिचित अबीजीय फलन लघुगणक, घातीय फलन (किसी भी गैर-तुच्छ आधार के साथ), त्रिकोणमितीय फलन और अतिपरवलयिक फलन और इन सभी के व्युत्क्रम फलन हैं। कम परिचित [[गणितीय विश्लेषण]] के [[विशेष कार्य|विशेष फलन]] हैं, जैसे कि [[गामा समारोह]], दीर्घवृत्तीय | |||
एक फलन जो अबीजीय नहीं है वह बीजगणितीय है। बीजगणितीय फलनों के सरल उदाहरण [[तर्कसंगत कार्य|तर्कसंगत फलन]] और [[वर्गमूल]] फलन हैं, | एक फलन जो अबीजीय नहीं है वह बीजगणितीय है। बीजगणितीय फलनों के सरल उदाहरण [[तर्कसंगत कार्य|तर्कसंगत फलन]] और [[वर्गमूल]] फलन हैं, परन्तु सामान्य तौर पर, बीजगणितीय फलनों को प्राथमिक फलनों के परिमित सूत्रों के रूप में परिभाषित नहीं किया जा सकता है।<ref>''cf.'' [[Abel–Ruffini theorem]]</ref> | ||
कई बीजगणितीय फलनों का [[अनिश्चितकालीन अभिन्न]] अंग अबीजीय है। उदाहरण के लिए, [[अतिशयोक्तिपूर्ण क्षेत्र]] के क्षेत्र को खोजने के प्रयास में लघुगणक फलन गुणक व्युत्क्रम से उत्पन्न हुआ है। | |||
डिफरेंशियल बीजगणित जांच करता है कि कैसे एकीकरण प्रायः ऐसे फलनों का निर्माण करता है जो बीजीय रूप से कुछ वर्ग से स्वतंत्र होते हैं, जैसे कि जब कोई चर के रूप में त्रिकोणमितीय फलनों के साथ बहुपद लेता है। | |||
== अस्पष्ट रूप से अबीजीय फलन == | |||
गणितीय भौतिकी के विशेष फलनों सहित अधिकांश परिचित अबीजीय फलन, बीजगणितीय अंतर समीकरणों के समाधान हैं। जो नहीं हैं, जैसे कि गामा फलन और ज़ेटा फलन , उन्हें अबीजीय या [[हाइपरट्रांसेंडेंटल फ़ंक्शन|हाइपरट्रांसेंडेंटल फलन]] फलन कहा जाता है।<ref>{{Cite journal|first=Lee A.|last=Rubel|title=ट्रान्सेंडैंटली ट्रान्सेंडैंटल फ़ंक्शंस का एक सर्वेक्षण|journal=The American Mathematical Monthly|volume=96|number=9|date=November 1989|pages=777–788|doi=10.1080/00029890.1989.11972282|jstor=2324840}}</ref> | |||
== असाधारण | == असाधारण समुच्चय == | ||
यदि <math>f</math> एक बीजगणितीय फलन है और <math>\alpha</math> तब एक [[बीजगणितीय संख्या]] है <math>f(\alpha)</math> एक बीजगणितीय संख्या भी है। इसका विलोम सत्य नहीं है: संपूर्ण फलन हैं <math>f</math> ऐसा है कि <math>f(\alpha)</math> किसी भी बीजगणितीय के लिए एक बीजगणितीय संख्या है <math>\alpha.</math><ref>[http://journals.cambridge.org/download.php?file=%2FJAZ%2FJAZ8_02%2FS144678870000522Xa.pdf&code=c1078490e410e75b00828a47df480146 A. J. van der Poorten. 'Transcendental entire functions mapping every algebraic number field into itself’, J. Austral. Math. Soc. 8 (1968), 192–198]</ref> किसी दिए गए | यदि <math>f</math> एक बीजगणितीय फलन है और <math>\alpha</math> तब एक [[बीजगणितीय संख्या]] है <math>f(\alpha)</math> एक बीजगणितीय संख्या भी है। इसका विलोम सत्य नहीं है: संपूर्ण फलन हैं <math>f</math> ऐसा है कि <math>f(\alpha)</math> किसी भी बीजगणितीय के लिए एक बीजगणितीय संख्या है <math>\alpha.</math><ref>[http://journals.cambridge.org/download.php?file=%2FJAZ%2FJAZ8_02%2FS144678870000522Xa.pdf&code=c1078490e410e75b00828a47df480146 A. J. van der Poorten. 'Transcendental entire functions mapping every algebraic number field into itself’, J. Austral. Math. Soc. 8 (1968), 192–198]</ref> किसी दिए गए अबीजीय फलन के लिए बीजगणितीय परिणाम देने वाले बीजगणितीय संख्याओं के समुच्चय को उस फलन का असाधारण समुच्चय कहा जाता है।<ref>D. Marques, F. M. S. Lima, ''[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.760.9296&rep=rep1&type=pdf Some transcendental functions that yield transcendental values for every algebraic entry]'', (2010) {{arxiv|1004.1668v1}}.</ref><ref>N. Archinard, ''[https://www.sciencedirect.com/science/article/pii/S0022314X03000428 Exceptional sets of hypergeometric series]'', Journal of Number Theory '''101''' Issue 2 (2003), pp.244–269.</ref> औपचारिक रूप से इसे परिभाषित किया गया है: | ||
<math display="block">\mathcal{E}(f)=\left \{\alpha\in\overline{\mathbf{Q}}\,:\,f(\alpha)\in\overline{\mathbf{Q}} \right \}.</math> | <math display="block">\mathcal{E}(f)=\left \{\alpha\in\overline{\mathbf{Q}}\,:\,f(\alpha)\in\overline{\mathbf{Q}} \right \}.</math> | ||
कई उदाहरणों में असाधारण | कई उदाहरणों में असाधारण समुच्चय काफी छोटा होता है। उदाहरण के लिए, <math>\mathcal{E}(\exp) = \{0\},</math> यह 1882 में [[फर्डिनेंड वॉन लिंडमैन]] द्वारा सिद्ध किया गया था। विशेष रूप से {{math|1=exp(1) = ''e''}} अबीजीय है। इसके अलावा, चूंकि {{math|1=exp(''iπ'') = −1}} बीजगणितीय है हम जानते हैं कि {{math|''iπ''}} बीजीय नहीं हो सकता है। तब से {{math|''i''}} बीजगणितीय है इसका तात्पर्य है कि {{math|''π''}} एक [[पारलौकिक संख्या|अबीजीय संख्या]] है। | ||
सामान्य तौर पर, किसी फलन के असाधारण | सामान्य तौर पर, किसी फलन के असाधारण समुच्चय को ढूंढना एक कठिन समस्या है, परन्तु यदि इसकी गणना की जा सकती है तो यह प्रायः अबीजीय संख्या सिद्धांत में परिणाम दे सकता है। यहाँ कुछ अन्य ज्ञात असाधारण समुच्चय हैं: | ||
* क्लेन का जे-इनवेरिएंट<math display="block">\mathcal{E}(j) = \left\{\alpha\in\mathbf{H}\,:\,[\mathbf{Q}(\alpha): \mathbf{Q}] = 2 \right\},</math> जहां H [[ऊपरी आधा विमान]] है, और [Q(''α''): Q] [[बीजगणितीय संख्या क्षेत्र]] Q(''α'') के क्षेत्र विस्तार की डिग्री है। यह परिणाम [[थियोडोर श्नाइडर]] के कारण है।<ref>T. Schneider, ''Arithmetische Untersuchungen elliptischer Integrale'', Math. Annalen '''113''' (1937), pp.1–13.</ref> | * क्लेन का जे-इनवेरिएंट<math display="block">\mathcal{E}(j) = \left\{\alpha\in\mathbf{H}\,:\,[\mathbf{Q}(\alpha): \mathbf{Q}] = 2 \right\},</math> जहां H [[ऊपरी आधा विमान|ऊपरी आधा समतल]] है, और [Q(''α''): Q] [[बीजगणितीय संख्या क्षेत्र]] Q(''α'') के क्षेत्र विस्तार की डिग्री है। यह परिणाम [[थियोडोर श्नाइडर]] के कारण है।<ref>T. Schneider, ''Arithmetische Untersuchungen elliptischer Integrale'', Math. Annalen '''113''' (1937), pp.1–13.</ref> | ||
* आधार 2 में घातीय फलन: <math display="block">\mathcal{E}(2^x)=\mathbf{Q},</math>यह परिणाम गेलफॉन्ड-श्नाइडर प्रमेय का परिणाम है, जिसमें कहा गया है कि | * आधार 2 में घातीय फलन: <math display="block">\mathcal{E}(2^x)=\mathbf{Q},</math>यह परिणाम गेलफॉन्ड-श्नाइडर प्रमेय का परिणाम है, जिसमें कहा गया है कि यदि <math>\alpha \neq 0,1</math> बीजगणितीय है, और <math>\beta</math> तब बीजगणितीय और अपरिमेय है <math>\alpha^\beta</math> अबीजीय है। इस प्रकार फलन 2<sup>x</sup> को c से बदला जा सकता है<sup>x</sup> किसी भी बीजगणितीय c के लिए जो 0 या 1 के बराबर नहीं है। दरअसल, हमारे पास: <math display="block">\mathcal{E}(x^x) = \mathcal{E}\left(x^{\frac{1}{x}}\right)=\mathbf{Q}\setminus\{0\}.</math> | ||
* अबीजीय संख्या सिद्धांत में शैनुअल के अनुमान का एक परिणाम यह होगा {{nowrap|<math>\mathcal{E}\left(e^{e^x}\right)=\emptyset</math>.}} | * अबीजीय संख्या सिद्धांत में शैनुअल के अनुमान का एक परिणाम यह होगा {{nowrap|<math>\mathcal{E}\left(e^{e^x}\right)=\emptyset</math>.}} | ||
* खाली असाधारण | * खाली असाधारण समुच्चय वाला एक फलन जिसे शानुएल के अनुमान को मानने की आवश्यकता नहीं है {{nowrap|<math>f(x) = \exp(1 + \pi x)</math>.}} | ||
किसी दिए गए फलन के लिए असाधारण | किसी दिए गए फलन के लिए असाधारण समुच्चय की गणना करना आसान नहीं है, यह ज्ञात है कि बीजगणितीय संख्याओं के किसी भी उपसमुच्चय को ए कहते हैं, एक अबीजीय फलन है जिसका असाधारण समुच्चय ए है।<ref>M. Waldschmidt, ''[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.249.3174&rep=rep1&type=pdf Auxiliary functions in transcendental number theory]'', ''The Ramanujan Journal'' '''20''' no 3, (2009), pp.341–373.</ref> उपसमुच्चय को उचित होने की आवश्यकता नहीं है, जिसका अर्थ है कि A बीजगणितीय संख्याओं का समुच्चय हो सकता है। इसका सीधा अर्थ है कि अबीजीय फलन मौजूद हैं जो अबीजीय संख्याएँ तभी उत्पन्न करते हैं जब अबीजीय संख्याएँ दी जाती हैं। [[एलेक्स विल्की]] ने यह भी साबित कर दिया कि ऐसे अबीजीय फलन मौजूद हैं जिनके लिए उनके पारगमन के बारे में [[प्रथम-क्रम-तर्क]] प्रमाण एक अनुकरणीय विश्लेषणात्मक फलन प्रदान करके मौजूद नहीं हैं।<ref>A. Wilkie, ''An algebraically conservative, transcendental function'', Paris VII preprints, number 66, 1998.</ref> | ||
== विमीय विश्लेषण == | == विमीय विश्लेषण == | ||
आयामी विश्लेषण में, अबीजीय फलन उल्लेखनीय हैं क्योंकि वे तभी समझ में आते हैं जब उनका तर्क आयामहीन होता है (संभवतः बीजगणितीय कमी के बाद)। इस वजह से, अबीजीय फलन आयामी त्रुटियों का एक आसानी से पता लगाने का स्त्रोत हो सकता है। उदाहरण के लिए, log( | आयामी विश्लेषण में, अबीजीय फलन उल्लेखनीय हैं क्योंकि वे तभी समझ में आते हैं जब उनका तर्क आयामहीन होता है (संभवतः बीजगणितीय कमी के बाद)। इस वजह से, अबीजीय फलन आयामी त्रुटियों का एक आसानी से पता लगाने का स्त्रोत हो सकता है। उदाहरण के लिए, {{math|log(5 metres)}} एक अभिव्यक्ति है, {{math|log(5 metres / 3 metres)}} या {{math|log(3) metres}} मीटर के विपरीत है। लोग {{math|log(5) + log(metres)}}प्राप्त करने के लिए लॉगरिदमिक पहचान लागू करने का प्रयास कर सकते हैं, जो समस्या को हाइलाइट करता है: एक गैर-बीजगणितीय ऑपरेशन को एक आयाम पर लागू करना अर्थहीन परिणाम बनाता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[जटिल कार्य| | * [[जटिल कार्य|समिश्र फलन]] | ||
* [[समारोह (गणित)]] | * [[समारोह (गणित)|फलन (गणित)]] | ||
* [[सामान्यीकृत कार्य|सामान्यीकृत फलन]] | * [[सामान्यीकृत कार्य|सामान्यीकृत फलन]] | ||
* [[विशेष कार्यों और नामों की सूची|विशेष फलनों और नामों की सूची]] | * [[विशेष कार्यों और नामों की सूची|विशेष फलनों और नामों की सूची]] | ||
Line 85: | Line 89: | ||
*लोगारित्म | *लोगारित्म | ||
*घातांक प्रफलन | *घातांक प्रफलन | ||
*त्रिकोणमितीय | *त्रिकोणमितीय फलन | ||
*बीजीय रूप से स्वतंत्र | *बीजीय रूप से स्वतंत्र | ||
*त्रिकोणमितीय टेबल | *त्रिकोणमितीय टेबल | ||
Line 91: | Line 95: | ||
*परबोला का चतुर्भुज | *परबोला का चतुर्भुज | ||
*उलटा काम करना | *उलटा काम करना | ||
*गोलाकार | *गोलाकार फलन | ||
*द्विभाजन | *द्विभाजन | ||
*अनंत के विश्लेषण का परिचय | *अनंत के विश्लेषण का परिचय | ||
Line 97: | Line 101: | ||
*चतुर्भुज (गणित) | *चतुर्भुज (गणित) | ||
*कारख़ाने का | *कारख़ाने का | ||
*अतिशयोक्तिपूर्ण | *अतिशयोक्तिपूर्ण फलन | ||
*सामान्यीकृत हाइपरजोमेट्रिक | *सामान्यीकृत हाइपरजोमेट्रिक फलन | ||
*अण्डाकार | *अण्डाकार फलन | ||
*अतिशयोक्तिपूर्ण फलन | *अतिशयोक्तिपूर्ण फलन | ||
*विभेदक बीजगणित | *विभेदक बीजगणित | ||
*गुणात्मक प्रतिलोम | *गुणात्मक प्रतिलोम | ||
*संपूर्ण | *संपूर्ण फलन | ||
*एक क्षेत्र विस्तार की डिग्री | *एक क्षेत्र विस्तार की डिग्री | ||
*आकार जांच | *आकार जांच |
Revision as of 01:22, 25 May 2023
गणित में, एक अबीजीय फलन एक विश्लेषिक फलन होता है जो बीजगणितीय फलन के विपरीत बहुपद समीकरण को स्वीकृत नहीं करता है।[1][2] दूसरे शब्दों में, एक अबीजीय फलन बीजगणित को "उत्कृष्ट" करता है क्योंकि इसे बीजगणितीय रूप से व्यक्त नहीं किया जा सकता है।
अबीजीय फलनों के उदाहरणों में घातीय फलन, लघुगणक और त्रिकोणमितीय फलन शामिल हैं।
परिभाषा
औपचारिक रूप से, एक वास्तविक या सम्मिश्र चर z का एक विश्लेषणात्मक फलन f (z) अबीजीय है यदि यह उस चर से बीजगणितीय रूप से स्वतंत्र है।[3] यह कई चर के फलनों के लिए बढ़ाया जा सकता है।
इतिहास
अबीजीय फलनों साइन और कोसाइन को प्राचीन काल में भौतिक माप से सारणीबद्ध किया गया था, जैसा कि ग्रीस (हिप्पार्कस) और भारत (ज्य और कोटि-ज्या) में प्रमाणित है। टॉलेमी की तारों की तालिका का वर्णन करते हुए, साइन की तालिका के बराबर, ओलाफ पेडर्सन ने लिखा:
एक स्पष्ट अवधारणा के रूप में निरंतरता की गणितीय धारणा टॉलेमी के लिए अज्ञात है। वह, वास्तव में, इन कार्यों को निरंतर मानता है, जो उसकी अव्यक्त धारणा से प्रतीत होता है कि रैखिक प्रक्षेप की सरल प्रक्रिया द्वारा स्वतंत्र चर के किसी भी मूल्य के अनुरूप आश्रित चर का मान निर्धारित करना संभव है।
The mathematical notion of continuity as an explicit concept is unknown to Ptolemy. That he, in fact, treats these functions as continuous appears from his unspoken presumption that it is possible to determine a value of the dependent variable corresponding to any value of the independent variable by the simple process of linear interpolation.[4]
इन वृत्तीय फलन की एक क्रांतिकारी समझ 17 वीं शताब्दी में हुई और 1748 में लिओनहार्ड यूलर द्वारा अनंत के विश्लेषण के परिचय में इसकी खोज की गई। 1647 में ग्रेगोइरे डी सेंट-विंसेंट द्वारा आयताकार हाइपरबोला xy = 1 के चतुर्भुज के माध्यम से इन प्राचीन अबीजीय फलनों को निरंतर फलनों के रूप में जाना जाता है, दो सहस्राब्दियों के बाद आर्किमिडीज़ ने पैराबोला (परवलय) के चतुर्भुज का उत्पादन किया था।
हाइपरबोला के अंतर्गत क्षेत्र को सीमा के निरंतर अनुपात के लिए स्थिर क्षेत्र की प्रवर्धन संपत्ति के रूप में दिखाया गया था। अतिशयोक्तिपूर्ण लघुगणक फलन का वर्णन 1748 तक सीमित सेवा का था, जब लियोनहार्ड यूलर ने इसे उन फलनों से संबंधित किया था जहां एक निरंतर एक चर घातांक के लिए उठाया जाता है, जैसे कि घातीय फलन जहां निरंतर आधार (घातांक) e (गणितीय स्थिरांक) है। इन अबीजीय फलनों को शुरू करने और एक व्युत्क्रम फलन का अर्थ करने वाली आपत्ति संपत्ति को ध्यान में रखते हुए, प्राकृतिक लघुगणक के बीजगणितीय जोड़तोड़ के लिए कुछ सुविधा प्रदान की गई थी, भले ही यह बीजगणितीय फलन न हो।
घातीय फलन लिखा है . यूलर ने इसकी पहचान अनंत श्रृंखला से की , जहाँ k! के भाज्य को दर्शाता है।
इस श्रृंखला के सम और विषम पद cosh(x) और sinh(x) को दर्शाने वाले योग प्रदान करते हैं, ताकि .। इन अनुवांशिक अतिपरवलयिक फलनों को श्रृंखला में (−1)k शुरू करके वृत्तीय फलन साइन और कोसाइन में परिवर्तित किया जा सकता है, जिसके परिणामस्वरूप वैकल्पिक श्रृंखला होती है। यूलर के बाद, गणितज्ञ समिश्र संख्या अंकगणित में प्रायः यूलर के सूत्र के माध्यम से साइन और कोसाइन को लघुगणक और प्रतिपादक फलनों के उत्थान से संबंधित करने के लिए देखते हैं।
उदाहरण
निम्नलिखित फलन अबीजीय हैं:
बीजगणितीय और अबीजीय फलन
सबसे परिचित अबीजीय फलन लघुगणक, घातीय फलन (किसी भी गैर-तुच्छ आधार के साथ), त्रिकोणमितीय फलन और अतिपरवलयिक फलन और इन सभी के व्युत्क्रम फलन हैं। कम परिचित गणितीय विश्लेषण के विशेष फलन हैं, जैसे कि गामा, दीर्घवृत्तीय और जीटा फलन, जो सभी अबीजीय हैं। सामान्यीकृत हाइपरज्यामितीय फलन और बेसेल फलन फलन सामान्य रूप से अबीजीय हैं, परन्तु कुछ विशेष पैरामीटर मानों के लिए बीजगणितीय हैं।
एक फलन जो अबीजीय नहीं है वह बीजगणितीय है। बीजगणितीय फलनों के सरल उदाहरण तर्कसंगत फलन और वर्गमूल फलन हैं, परन्तु सामान्य तौर पर, बीजगणितीय फलनों को प्राथमिक फलनों के परिमित सूत्रों के रूप में परिभाषित नहीं किया जा सकता है।[5]
कई बीजगणितीय फलनों का अनिश्चितकालीन अभिन्न अंग अबीजीय है। उदाहरण के लिए, अतिशयोक्तिपूर्ण क्षेत्र के क्षेत्र को खोजने के प्रयास में लघुगणक फलन गुणक व्युत्क्रम से उत्पन्न हुआ है।
डिफरेंशियल बीजगणित जांच करता है कि कैसे एकीकरण प्रायः ऐसे फलनों का निर्माण करता है जो बीजीय रूप से कुछ वर्ग से स्वतंत्र होते हैं, जैसे कि जब कोई चर के रूप में त्रिकोणमितीय फलनों के साथ बहुपद लेता है।
अस्पष्ट रूप से अबीजीय फलन
गणितीय भौतिकी के विशेष फलनों सहित अधिकांश परिचित अबीजीय फलन, बीजगणितीय अंतर समीकरणों के समाधान हैं। जो नहीं हैं, जैसे कि गामा फलन और ज़ेटा फलन , उन्हें अबीजीय या हाइपरट्रांसेंडेंटल फलन फलन कहा जाता है।[6]
असाधारण समुच्चय
यदि एक बीजगणितीय फलन है और तब एक बीजगणितीय संख्या है एक बीजगणितीय संख्या भी है। इसका विलोम सत्य नहीं है: संपूर्ण फलन हैं ऐसा है कि किसी भी बीजगणितीय के लिए एक बीजगणितीय संख्या है [7] किसी दिए गए अबीजीय फलन के लिए बीजगणितीय परिणाम देने वाले बीजगणितीय संख्याओं के समुच्चय को उस फलन का असाधारण समुच्चय कहा जाता है।[8][9] औपचारिक रूप से इसे परिभाषित किया गया है:
सामान्य तौर पर, किसी फलन के असाधारण समुच्चय को ढूंढना एक कठिन समस्या है, परन्तु यदि इसकी गणना की जा सकती है तो यह प्रायः अबीजीय संख्या सिद्धांत में परिणाम दे सकता है। यहाँ कुछ अन्य ज्ञात असाधारण समुच्चय हैं:
- क्लेन का जे-इनवेरिएंटजहां H ऊपरी आधा समतल है, और [Q(α): Q] बीजगणितीय संख्या क्षेत्र Q(α) के क्षेत्र विस्तार की डिग्री है। यह परिणाम थियोडोर श्नाइडर के कारण है।[10]
- आधार 2 में घातीय फलन: यह परिणाम गेलफॉन्ड-श्नाइडर प्रमेय का परिणाम है, जिसमें कहा गया है कि यदि बीजगणितीय है, और तब बीजगणितीय और अपरिमेय है अबीजीय है। इस प्रकार फलन 2x को c से बदला जा सकता हैx किसी भी बीजगणितीय c के लिए जो 0 या 1 के बराबर नहीं है। दरअसल, हमारे पास:
- अबीजीय संख्या सिद्धांत में शैनुअल के अनुमान का एक परिणाम यह होगा .
- खाली असाधारण समुच्चय वाला एक फलन जिसे शानुएल के अनुमान को मानने की आवश्यकता नहीं है .
किसी दिए गए फलन के लिए असाधारण समुच्चय की गणना करना आसान नहीं है, यह ज्ञात है कि बीजगणितीय संख्याओं के किसी भी उपसमुच्चय को ए कहते हैं, एक अबीजीय फलन है जिसका असाधारण समुच्चय ए है।[11] उपसमुच्चय को उचित होने की आवश्यकता नहीं है, जिसका अर्थ है कि A बीजगणितीय संख्याओं का समुच्चय हो सकता है। इसका सीधा अर्थ है कि अबीजीय फलन मौजूद हैं जो अबीजीय संख्याएँ तभी उत्पन्न करते हैं जब अबीजीय संख्याएँ दी जाती हैं। एलेक्स विल्की ने यह भी साबित कर दिया कि ऐसे अबीजीय फलन मौजूद हैं जिनके लिए उनके पारगमन के बारे में प्रथम-क्रम-तर्क प्रमाण एक अनुकरणीय विश्लेषणात्मक फलन प्रदान करके मौजूद नहीं हैं।[12]
विमीय विश्लेषण
आयामी विश्लेषण में, अबीजीय फलन उल्लेखनीय हैं क्योंकि वे तभी समझ में आते हैं जब उनका तर्क आयामहीन होता है (संभवतः बीजगणितीय कमी के बाद)। इस वजह से, अबीजीय फलन आयामी त्रुटियों का एक आसानी से पता लगाने का स्त्रोत हो सकता है। उदाहरण के लिए, log(5 metres) एक अभिव्यक्ति है, log(5 metres / 3 metres) या log(3) metres मीटर के विपरीत है। लोग log(5) + log(metres)प्राप्त करने के लिए लॉगरिदमिक पहचान लागू करने का प्रयास कर सकते हैं, जो समस्या को हाइलाइट करता है: एक गैर-बीजगणितीय ऑपरेशन को एक आयाम पर लागू करना अर्थहीन परिणाम बनाता है।
यह भी देखें
- समिश्र फलन
- फलन (गणित)
- सामान्यीकृत फलन
- विशेष फलनों और नामों की सूची
- फलनों के प्रकारों की सूची
- तर्कसंगत फलन
- विशेष फलन
संदर्भ
- ↑ E. J. Townsend, Functions of a Complex Variable, 1915, p. 300
- ↑ Michiel Hazewinkel, Encyclopedia of Mathematics, 1993, 9:236
- ↑ M. Waldschmidt, Diophantine approximation on linear algebraic groups, Springer (2000).
- ↑ Olaf Pedersen (1974) Survey of the Almagest, page 84, Odense University Press ISBN 87-7492-087-1
- ↑ cf. Abel–Ruffini theorem
- ↑ Rubel, Lee A. (November 1989). "ट्रान्सेंडैंटली ट्रान्सेंडैंटल फ़ंक्शंस का एक सर्वेक्षण". The American Mathematical Monthly. 96 (9): 777–788. doi:10.1080/00029890.1989.11972282. JSTOR 2324840.
- ↑ A. J. van der Poorten. 'Transcendental entire functions mapping every algebraic number field into itself’, J. Austral. Math. Soc. 8 (1968), 192–198
- ↑ D. Marques, F. M. S. Lima, Some transcendental functions that yield transcendental values for every algebraic entry, (2010) arXiv:1004.1668v1.
- ↑ N. Archinard, Exceptional sets of hypergeometric series, Journal of Number Theory 101 Issue 2 (2003), pp.244–269.
- ↑ T. Schneider, Arithmetische Untersuchungen elliptischer Integrale, Math. Annalen 113 (1937), pp.1–13.
- ↑ M. Waldschmidt, Auxiliary functions in transcendental number theory, The Ramanujan Journal 20 no 3, (2009), pp.341–373.
- ↑ A. Wilkie, An algebraically conservative, transcendental function, Paris VII preprints, number 66, 1998.
इस पेज में लापता आंतरिक लिंक की सूची
- अंक शास्त्र
- विश्लेषणात्मक फलन
- बीजगणितीय फलन
- लोगारित्म
- घातांक प्रफलन
- त्रिकोणमितीय फलन
- बीजीय रूप से स्वतंत्र
- त्रिकोणमितीय टेबल
- उन लोगों के
- परबोला का चतुर्भुज
- उलटा काम करना
- गोलाकार फलन
- द्विभाजन
- अनंत के विश्लेषण का परिचय
- ई (गणितीय स्थिरांक)
- चतुर्भुज (गणित)
- कारख़ाने का
- अतिशयोक्तिपूर्ण फलन
- सामान्यीकृत हाइपरजोमेट्रिक फलन
- अण्डाकार फलन
- अतिशयोक्तिपूर्ण फलन
- विभेदक बीजगणित
- गुणात्मक प्रतिलोम
- संपूर्ण फलन
- एक क्षेत्र विस्तार की डिग्री
- आकार जांच
- फलनों के प्रकार की सूची
बाहरी कड़ियाँ
श्रेणी:विश्लेषणात्मक फलन श्रेणी: फलन और मानचित्रण श्रेणी: मेरोमोर्फिक प्रफलन श्रेणी:विशेष फलन श्रेणी: फलनों के प्रकार