कर्नेल प्रधान घटक विश्लेषण: Difference between revisions

From Vigyanwiki
No edit summary
Line 17: Line 17:
एक [[ hyperplane |हाइपरप्लेन]] का निर्माण करना आसान है जो बिंदुओं को मनमाना समूहों में विभाजित करता है। बेशक, यह <math>\Phi</math> रैखिक रूप से स्वतंत्र वैक्टर बनाता है, इसलिए ऐसा कोई सहप्रसरण नहीं है जिस पर स्पष्ट रूप से  आइगेनडीकंपोजिशन किया जा सके जैसा कि हम रैखिक पीसीए में करते हैं।
एक [[ hyperplane |हाइपरप्लेन]] का निर्माण करना आसान है जो बिंदुओं को मनमाना समूहों में विभाजित करता है। बेशक, यह <math>\Phi</math> रैखिक रूप से स्वतंत्र वैक्टर बनाता है, इसलिए ऐसा कोई सहप्रसरण नहीं है जिस पर स्पष्ट रूप से  आइगेनडीकंपोजिशन किया जा सके जैसा कि हम रैखिक पीसीए में करते हैं।


इसके बजाय, कर्नेल पीसीए में, एक गैर-तुच्छ, मनमाना <math>\Phi</math> फ़ंक्शन 'चयनित' है जिसे कभी भी स्पष्ट रूप से गणना नहीं की जाती है, जिससे संभावना को बहुत उच्च-आयामी उपयोग करने की अनुमति मिलती है <math>\Phi</math>अगर हमें वास्तव में उस स्थान में डेटा का मूल्यांकन नहीं करना है। चूंकि हम आम तौर पर काम करने से बचने की कोशिश करते हैं <math>\Phi</math>-स्पेस, जिसे हम 'फीचर स्पेस' कहेंगे, हम एन-बाय-एन कर्नेल बना सकते हैं
इसके बजाय, कर्नेल पीसीए में, एक गैर-तुच्छ, मनमाना <math>\Phi</math> फ़ंक्शन 'चयनित' है जिसकी कभी भी स्पष्ट रूप से गणना नहीं की जाती है, जिससे संभावना को बहुत उच्च-आयामी उपयोग करने की अनुमति मिलती है <math>\Phi</math> अगर हमें वास्तव में उस स्थान में डेटा का मूल्यांकन नहीं करना है। चूंकि हम आम तौर पर काम करने से बचने की प्रयास करते हैं <math>\Phi</math>-स्पेस, जिसे हम 'फीचर स्पेस' कहेंगे, हम एन-बाय-एन कर्नेल बना सकते हैं


:<math>K = k(\mathbf{x},\mathbf{y}) = (\Phi(\mathbf{x}),\Phi(\mathbf{y})) = \Phi(\mathbf{x})^T\Phi(\mathbf{y})</math>
:<math>K = k(\mathbf{x},\mathbf{y}) = (\Phi(\mathbf{x}),\Phi(\mathbf{y})) = \Phi(\mathbf{x})^T\Phi(\mathbf{y})</math>

Revision as of 12:46, 28 May 2023

बहुभिन्नरूपी सांख्यिकी के क्षेत्र में, कर्नेल प्रिंसिपल कंपोनेंट एनालिसिस (कर्नेल पीसीए)[1] कर्नेल विधियों की तकनीकों का उपयोग करके प्रिंसिपल कंपोनेंट एनालिसिस (पीसीए) का एक विस्तार है। कर्नेल का उपयोग करते हुए, पीसीए का मूल रूप से रैखिक संचालन एक पुनरुत्पादित कर्नेल हिल्बर्ट स्पेस में किया जाता है।

पृष्ठभूमि: रैखिक पीसीए

याद रखें कि पारंपरिक पीसीए शून्य-केंद्रित डेटा पर काम करता है; वह है,

,

कहाँ इनमें से एक है बहुभिन्नरूपी अवलोकन। यह सहप्रसरण मैट्रिक्स को विकर्ण करके संचालित होता है,

दूसरे शब्दों में, यह सहप्रसरण मैट्रिक्स का एक आइगेनडीकंपोजिशन देता है:

जिसे फिर से लिखा जा सकता है

.[2]

(यह भी देखें: सहप्रसरण मैट्रिक्स एक रैखिक ऑपरेटर के रूप में)

पीसीए के लिए कर्नेल का परिचय

कर्नेल पीसीए की उपयोगिता को समझने के लिए, विशेष रूप से क्लस्टरिंग के लिए, निरीक्षण करें कि, जबकि एन अंक सामान्य रूप से रैखिक पृथक्करणीयता नहीं हो सकते हैं आयाम, वे लगभग हमेशा रैखिक रूप से अलग हो सकते हैं आयाम। यानी एन अंक दिए गए हैं, , अगर हम उन्हें एन-डायमेंशनल स्थान के साथ मैप करते हैं

कहाँ ,

एक हाइपरप्लेन का निर्माण करना आसान है जो बिंदुओं को मनमाना समूहों में विभाजित करता है। बेशक, यह रैखिक रूप से स्वतंत्र वैक्टर बनाता है, इसलिए ऐसा कोई सहप्रसरण नहीं है जिस पर स्पष्ट रूप से आइगेनडीकंपोजिशन किया जा सके जैसा कि हम रैखिक पीसीए में करते हैं।

इसके बजाय, कर्नेल पीसीए में, एक गैर-तुच्छ, मनमाना फ़ंक्शन 'चयनित' है जिसकी कभी भी स्पष्ट रूप से गणना नहीं की जाती है, जिससे संभावना को बहुत उच्च-आयामी उपयोग करने की अनुमति मिलती है अगर हमें वास्तव में उस स्थान में डेटा का मूल्यांकन नहीं करना है। चूंकि हम आम तौर पर काम करने से बचने की प्रयास करते हैं -स्पेस, जिसे हम 'फीचर स्पेस' कहेंगे, हम एन-बाय-एन कर्नेल बना सकते हैं

जो आंतरिक उत्पाद स्थान (ग्रामियन मैट्रिक्स देखें) का प्रतिनिधित्व करता है अन्यथा अट्रैक्टिव फीचर स्पेस। एक कर्नेल के निर्माण में उत्पन्न होने वाला दोहरा रूप हमें गणितीय रूप से पीसीए के एक संस्करण को तैयार करने की अनुमति देता है जिसमें हम वास्तव में सहप्रसरण मैट्रिक्स के ईजेनवेक्टर और ईजेनवैल्यू को हल नहीं करते हैं। -स्पेस (कर्नेल चाल देखें)। K के प्रत्येक स्तंभ में N-तत्व सभी रूपांतरित बिंदुओं (N बिंदुओं) के संबंध में रूपांतरित डेटा के एक बिंदु के डॉट उत्पाद का प्रतिनिधित्व करते हैं। नीचे दिए गए उदाहरण में कुछ जाने-माने कर्नेल दिखाए गए हैं।

क्योंकि हम कभी भी फीचर स्पेस में सीधे काम नहीं कर रहे हैं, पीसीए का कर्नेल-फॉर्मूलेशन प्रतिबंधित है, क्योंकि यह स्वयं प्रमुख घटकों की गणना नहीं करता है, बल्कि उन घटकों पर हमारे डेटा के अनुमानों की गणना करता है। सुविधा स्थान में एक बिंदु से प्रक्षेपण का मूल्यांकन करने के लिए kवें प्रमुख घटक पर (जहाँ सुपरस्क्रिप्ट k का अर्थ है घटक k, k की शक्तियाँ नहीं)

हमने ध्यान दिया कि डॉट उत्पाद को दर्शाता है, जो केवल कर्नेल के तत्व हैं . ऐसा लगता है कि जो कुछ बचा है, उसकी गणना और सामान्यीकरण करना है , जो ईजेनवेक्टर समीकरण को हल करके किया जा सकता है

कहाँ सेट में डेटा बिंदुओं की संख्या है, और और के eigenvalues ​​​​और eigenvectors हैं . फिर eigenvectors को सामान्य करने के लिए , हमें इसकी आवश्यकता है

इस बात का ध्यान रखा जाना चाहिए कि है या नहीं अपने मूल स्थान में शून्य-माध्य है, यह सुविधा स्थान में केंद्रित होने की गारंटी नहीं है (जिसे हम कभी भी स्पष्ट रूप से गणना नहीं करते हैं)। चूंकि एक प्रभावी प्रमुख घटक विश्लेषण करने के लिए केंद्रित डेटा की आवश्यकता होती है, हम 'केंद्रित मैट्रिक्स' बनना

कहाँ एन-बाय-एन मैट्रिक्स को दर्शाता है जिसके लिए प्रत्येक तत्व मान लेता है . हम उपयोग करते हैं ऊपर वर्णित कर्नेल पीसीए एल्गोरिथ्म को करने के लिए।

कर्नेल पीसीए की एक चेतावनी को यहाँ चित्रित किया जाना चाहिए। रैखिक पीसीए में, हम प्रत्येक प्रमुख घटक द्वारा डेटा की कितनी भिन्नता पर आधारित ईजेनवेक्टरों को रैंक करने के लिए ईजेनवेल्यूज का उपयोग कर सकते हैं। यह डेटा आयाम में कमी के लिए उपयोगी है और इसे केपीसीए पर भी लागू किया जा सकता है। हालाँकि, व्यवहार में ऐसे मामले होते हैं कि डेटा की सभी विविधताएँ समान होती हैं। यह आमतौर पर कर्नेल स्केल के गलत चुनाव के कारण होता है।

बड़े डेटासेट

व्यवहार में, एक बड़ा डेटा सेट एक बड़े K की ओर ले जाता है, और K को स्टोर करना एक समस्या बन सकता है। इससे निपटने का एक तरीका डेटासेट पर क्लस्टरिंग करना है, और उन क्लस्टर्स के माध्यम से कर्नेल को पॉप्युलेट करना है। चूँकि यह विधि भी अपेक्षाकृत बड़ी K उत्पन्न कर सकती है, केवल शीर्ष P eigenvalues ​​​​की गणना करना आम है और eigenvalues ​​​​के eigenvectors की गणना इस तरह से की जाती है।

उदाहरण

कर्नेल पीसीए से पहले इनपुट बिंदु

बिंदुओं के तीन गाढ़ा बादलों पर विचार करें (दिखाया गया); हम इन समूहों की पहचान करने के लिए कर्नेल पीसीए का उपयोग करना चाहते हैं। बिंदुओं का रंग एल्गोरिथम में शामिल जानकारी का प्रतिनिधित्व नहीं करता है, लेकिन केवल यह दर्शाता है कि परिवर्तन डेटा बिंदुओं को कैसे स्थानांतरित करता है।

पहले कर्नेल पर विचार करें

इसे कर्नेल पीसीए पर लागू करने से अगली छवि प्राप्त होती है।

कर्नेल पीसीए के बाद आउटपुट . तीन समूहों को केवल पहले घटक का उपयोग करके पहचाना जा सकता है।

अब गॉसियन कर्नेल पर विचार करें:

यही है, यह कर्नेल निकटता का माप है, 1 के बराबर जब अंक मिलते हैं और अनंत पर 0 के बराबर होते हैं।

गाऊसी कर्नेल के साथ कर्नेल पीसीए के बाद आउटपुट।

विशेष रूप से ध्यान दें कि पहला प्रमुख घटक तीन अलग-अलग समूहों को अलग करने के लिए पर्याप्त है, जो कि केवल रैखिक पीसीए का उपयोग करना असंभव है, क्योंकि रैखिक पीसीए केवल दिए गए (इस मामले में द्वि-आयामी) स्थान में संचालित होता है, जिसमें ये गाढ़ा बिंदु बादल होते हैं रैखिक रूप से वियोज्य नहीं।

अनुप्रयोग

नवीनता का पता लगाने के लिए कर्नेल पीसीए को उपयोगी साबित किया गया है[3] और छवि डी-शोर।[4]


यह भी देखें

संदर्भ

  1. Schölkopf, Bernhard; Smola, Alex; Müller, Klaus-Robert (1998). "कर्नेल आइगेनवैल्यू प्रॉब्लम के रूप में नॉनलाइनियर कंपोनेंट एनालिसिस". Neural Computation. 10 (5): 1299–1319. CiteSeerX 10.1.1.100.3636. doi:10.1162/089976698300017467. S2CID 6674407.
  2. Scholkopf, Bernhard; Smola, Alexander; Müller, Klaus-Robert (December 1996). कर्नेल आइगेनवैल्यू प्रॉब्लम के रूप में नॉनलाइनियर कंपोनेंट एनालिसिस (PDF) (Technical report). Max-Planck-Institut für biologische Kybernetik. 44.
  3. Hoffmann, Heiko (2007). "नॉवेल्टी डिटेक्शन के लिए कर्नेल पीसीए". Pattern Recognition. 40 (3): 863–874. doi:10.1016/j.patcog.2006.07.009.
  4. Kernel PCA and De-Noising in Feature Spaces. NIPS, 1999