आदर्श (समुच्चय सिद्धांत): Difference between revisions

From Vigyanwiki
mNo edit summary
mNo edit summary
Line 46: Line 46:
== आदर्शों पर संचालन ==
== आदर्शों पर संचालन ==


आदर्श दिए {{mvar|I}} और {{mvar|J}} अंतर्निहित सेट पर {{mvar|X}} और {{mvar|Y}} क्रमशः, एक उत्पाद बनाता है <math>I \times J</math> कार्टेशियन उत्पाद पर <math>X \times Y,</math> इस प्रकार है: किसी भी उपसमुच्चय के लिए <math>A \subseteq X \times Y,</math>
अंतर्निहित सेट {{mvar|X}} और {{mvar|Y}} पर आदर्श {{mvar|I}} और {{mvar|J}} क्रमशः दिए गए हैं, कार्टेशियन उत्पाद <math>X \times Y,</math>पर <math>I \times J</math> एक उत्पाद बनाता है इस प्रकार किसी भी उपसमुच्चय के लिए
 
<math>A \subseteq X \times Y,</math>
<math display="block">A \in I \times J \quad \text{ if and only if } \quad \{ x \in X \; : \; \{y : \langle x, y \rangle \in A\} \not\in J \} \in I</math>
<math display="block">A \in I \times J \quad \text{ if and only if } \quad \{ x \in X \; : \; \{y : \langle x, y \rangle \in A\} \not\in J \} \in I</math>
अर्थात्, उत्पाद आदर्श में एक सेट नगण्य है यदि केवल एक नगण्य संग्रह है {{mvar|x}}-निर्देशांक एक गैर-नगण्य स्लाइस के अनुरूप हैं {{mvar|A}} में {{mvar|y}}-दिशा। (शायद स्पष्ट: एक सेट है {{em|positive}} उत्पाद आदर्श में अगर सकारात्मक रूप से कई {{mvar|x}}-निर्देशांक सकारात्मक स्लाइस के अनुरूप हैं।)
अर्थात्,उत्पाद आदर्श में एक सेट नगण्य है यदि {{mvar|x}}-निर्देशांक का केवल एक नगण्य संग्रह {{mvar|y}}-दिशा में {{mvar|A}} के गैर-नगण्य टुकड़े के अनुरूप है।(शायद स्पष्ट: उत्पाद आदर्श में एक सेट सकारात्मक है यदि सकारात्मक रूप से कई {{mvar|x}}-निर्देशांक सकारात्मक स्लाइस के अनुरूप हैं।)


एक आदर्श {{mvar|I}} एक सेट पर {{mvar|X}} एक [[तुल्यता संबंध]] को प्रेरित करता है <math>\wp(X),</math> का पावरसेट {{mvar|X}}, मानते हुए {{mvar|A}} और {{mvar|B}} समकक्ष होना (के लिए <math>A, B</math> के उपसमुच्चय {{mvar|X}}) अगर और केवल अगर के [[सममित अंतर]] {{mvar|A}} और {{mvar|B}} का एक तत्व है {{mvar|I}}. का भागफल सेट <math>\wp(X)</math> इस तुल्यता संबंध से एक [[बूलियन बीजगणित (संरचना)]] है, जिसे निरूपित किया गया है <math>\wp(X) / I</math> (पी का पी पढ़ें {{mvar|X}} ख़िलाफ़ {{mvar|I}} ).
आदर्श {{mvar|I}} एक सेट पर {{mvar|X}} एक [[तुल्यता संबंध]] को प्रेरित करता है <math>\wp(X),</math> का पावरसेट {{mvar|X}}, मानते हुए {{mvar|A}} और {{mvar|B}} समकक्ष होना (के लिए <math>A, B</math> के उपसमुच्चय {{mvar|X}}) अगर और केवल अगर के [[सममित अंतर]] {{mvar|A}} और {{mvar|B}} का एक तत्व {{mvar|I}} है . का भागफल सेट <math>\wp(X)</math> इस तुल्यता संबंध से एक [[बूलियन बीजगणित (संरचना)]] है, जिसे निरूपित किया गया है <math>\wp(X) / I</math> (पी का पी पढ़ें {{mvar|X}} ख़िलाफ़ {{mvar|I}} ).


{{anchor|Dual filter}} हर आदर्श के लिए एक संबंधित फ़िल्टर (सेट सिद्धांत) होता है, जिसे इसका कहा जाता है {{em|dual filter}}. अगर {{mvar|I}} पर एक आदर्श है {{mvar|X}}, फिर का दोहरा फ़िल्टर {{mvar|I}} सभी सेटों का संग्रह है <math>X \setminus A,</math> कहाँ {{mvar|A}} का एक तत्व है {{mvar|I}}. (यहाँ <math>X \setminus A</math> के [[सापेक्ष पूरक]] को दर्शाता है {{mvar|A}} में {{mvar|X}}; अर्थात्, के सभी तत्वों का संग्रह {{mvar|X}} वे हैं {{em|not}} में {{mvar|A}}).
{{anchor|Dual filter}} सभी आदर्श के लिए एक संबंधित फ़िल्टर (सेट सिद्धांत) होता है, जिसे इसका {{em|dual filter}} कहा जाता है । अगर {{mvar|X}} पर एक आदर्श {{mvar|I}} है , {{mvar|I}} का {{em|dual filter}} सभी सेट  <math>X \setminus A,</math> का संग्रह है, जहाँ {{mvar|A}} का एक {{mvar|I}} तत्व है. (यहाँ <math>X \setminus A</math>, {{mvar|X}} में {{mvar|A}} के सापेक्ष पूरक को दर्शाता है, अर्थात्, {{mvar|X}} के सभी तत्वों का संग्रह जो {{mvar|A}} में नहीं हैं).


== आदर्शों के बीच संबंध ==
== आदर्शों के बीच संबंध ==

Revision as of 10:30, 31 May 2023

सेट सिद्धांत के गणितीय क्षेत्र में, आदर्श सेट (गणित) का आंशिक क्रम संग्रह है जिसे छोटा या नगण्य माना जाता है। आदर्श के एक तत्व के प्रत्येक उपसमुच्चय को भी आदर्श में होना चाहिए (यह इस विचार को संहिताबद्ध करता है कि एक आदर्श लघुता की धारणा है), और आदर्श के किन्हीं दो तत्वों का संघ (सेट सिद्धांत) भी आदर्श में होना चाहिए।

अधिक औपचारिक रूप से, एक सेट दिया एक आदर्श पर के सत्ता स्थापित का एक खाली सेट सब सेट है ऐसा है कि:

  1. अगर और तब और
  2. अगर तब

कुछ लेखक चौथी शर्त जोड़ते हुए कहते हैं कि स्वयं में नहीं है ; ऐसे अतिरिक्त गुण वाले आदर्श उचित आदर्श कहलाते हैं

जहां प्रासंगिक आदेश शामिल किया गया है वहां सेट-सैद्धांतिक अर्थों में आदर्श (आदेश सिद्धांत) अर्थों में बिल्कुल आदर्श हैं। इसके अलावा,अंतर्निहित सेट के पॉवरसेट द्वारा गठित बूलियन रिंग पर रिंग-सैद्धांतिक अर्थों में बिल्कुल आदर्श हैं। आदर्श की दोहरी धारणा एक फ़िल्टर (सेट सिद्धांत) है।

शब्दावली

आदर्श का तत्व , -null या -negligible बताया गया, या केवल null या negligible होगा, यदि आदर्श को संदर्भ से समझा जाए।। अगर , पर आदर्श है तो का एक उपसमुच्चय -सकारात्मक (या सिर्फ सकारात्मक) कहा जाता है, यदि यह का तत्व नहीं है । के सभी -धनात्मक उपसमूहों के संग्रह को निरूपित किया जाता है

अगर पर उचित आदर्श है और प्रत्येक के लिए दोनों में से एक या तब एक प्रमुख आदर्श है।

आदर्शों के उदाहरण

सामान्य उदाहरण

  • किसी भी सेट और और मनमाने ढंग से चुने गए उपसमुच्चय के लिए के उपसमुच्चय पर एक आदर्श बनाते हैं। परिमित के लिए, सभी आदर्श इसी रूप के हैं।
  • किसी समुच्चय के परिमित उपसमुच्चय पर एक आदर्श बनाते हैं।
  • किसी भी माप स्थान के लिए, माप शून्य के सेट के सबसेट है।
  • किसी भी माप स्थान के लिए, परिमित माप के सेट है। इसमें परिमित उपसमुच्चय (गणना माप का उपयोग करके) और नीचे छोटे सेट शामिल हैं।
  • सेट पर जन्म विज्ञान एक आदर्श है जो को आवरण करता है।
  • के सबसेट का एक गैर-खाली परिवार पर उचित आदर्श है,अगर इसकी dual में जिसे निरूपित और परिभाषित किया गया है एक उचित फ़िल्टर (सेट सिद्धांत) चालू है (फ़िल्टर है proper अगर यह बराबर नहीं है ). सत्ता स्थापित का दोहरा स्वयं है; वह है, इस प्रकार एक गैर-खाली परिवार पर आदर्श है अगर और केवल अगर यह दोहरी है पर दोहरा आदर्श है (जो परिभाषा के अनुसार या तो पावर सेट है या फिर एक उचित फ़िल्टर चालू करें ).

प्राकृतिक संख्या पर आदर्श

  • प्राकृतिक संख्याओं के सभी परिमित समुच्चयों के आदर्श को फिन द्वारा निरूपित किया जाता है।
  • प्राकृतिक संख्या पर योग योग्य आदर्श जिसे निरूपित किया जाता है, प्राकृतिक संख्याओं के सभी समुच्चय A का संग्रह है जैसे कि योग परिमित है।
  • छोटा सेट (कॉम्बिनेटरिक्स) देखें।
  • स्पर्शोन्मुख रूप से शून्य-घनत्व का आदर्श प्राकृतिक संख्याओं पर सेट होता है, जिसे निरूपित किया जाता है,प्राकृतिक संख्याओं के सभी समुच्चय A का संग्रह है जैसे कि n से कम प्राकृतिक संख्या का अंश जो A से संबंधित है, शून्य की ओर जाता है क्योंकि n अनंत की ओर जाता है।। (अर्थात, स्पर्शोन्मुख घनत्व शून्य है।)

वास्तविक संख्या पर आदर्श

  • माप आदर्श वास्तविक संख्याओं के सभी सेट का संग्रह है जैसे कि का लेबेस्ग माप(Lebesgue measure) शून्य है।
  • मामूली आदर्श वास्तविक संख्याओं के सभी अल्प सेटों का संग्रह है।

अन्य सेटों पर आदर्श

  • अगर अगणनीय सह-अस्तित्व की एक क्रमिक संख्या है, अस्थिर आदर्श पर के सभी उपसमूहों का संग्रह है जो स्थिर समुच्चय नहीं हैं। डब्ल्यू ह्यूग वुडिन द्वारा इस आदर्श का व्यापक अध्ययन किया गया है।

आदर्शों पर संचालन

अंतर्निहित सेट X और Y पर आदर्श I और J क्रमशः दिए गए हैं, कार्टेशियन उत्पाद पर एक उत्पाद बनाता है इस प्रकार किसी भी उपसमुच्चय के लिए

अर्थात्,उत्पाद आदर्श में एक सेट नगण्य है यदि x-निर्देशांक का केवल एक नगण्य संग्रह y-दिशा में A के गैर-नगण्य टुकड़े के अनुरूप है।(शायद स्पष्ट: उत्पाद आदर्श में एक सेट सकारात्मक है यदि सकारात्मक रूप से कई x-निर्देशांक सकारात्मक स्लाइस के अनुरूप हैं।)

आदर्श I एक सेट पर X एक तुल्यता संबंध को प्रेरित करता है का पावरसेट X, मानते हुए A और B समकक्ष होना (के लिए के उपसमुच्चय X) अगर और केवल अगर के सममित अंतर A और B का एक तत्व I है . का भागफल सेट इस तुल्यता संबंध से एक बूलियन बीजगणित (संरचना) है, जिसे निरूपित किया गया है (पी का पी पढ़ें X ख़िलाफ़ I ).

सभी आदर्श के लिए एक संबंधित फ़िल्टर (सेट सिद्धांत) होता है, जिसे इसका dual filter कहा जाता है । अगर X पर एक आदर्श I है , I का dual filter सभी सेट का संग्रह है, जहाँ A का एक I तत्व है. (यहाँ , X में A के सापेक्ष पूरक को दर्शाता है, अर्थात्, X के सभी तत्वों का संग्रह जो A में नहीं हैं).

आदर्शों के बीच संबंध

अगर और पर आदर्श हैं और क्रमश, और हैं Rudin–Keisler isomorphic यदि वे अपने अंतर्निहित सेटों के तत्वों के नाम बदलने के अलावा एक ही आदर्श हैं (नगण्य सेटों को अनदेखा कर रहे हैं)। अधिक औपचारिक रूप से, आवश्यकता यह है कि सेट हों और घटक और क्रमशः, और एक आक्षेप ऐसा कि किसी भी उपसमुच्चय के लिए अगर और केवल अगर की छवि (गणित) अंतर्गत अगर और रुडिन-कीस्लर आइसोमॉर्फिक हैं, फिर और बूलियन बीजगणित के रूप में आइसोमोर्फिक हैं। आदर्शों के रुडिन-कीस्लर समरूपता द्वारा प्रेरित भागफल बूलियन बीजगणित की समरूपता कहलाती है trivial isomorphisms.

यह भी देखें

संदर्भ

  • Farah, Ilijas (November 2000). Analytic quotients: Theory of liftings for quotients over analytic ideals on the integers. Memoirs of the AMS. American Mathematical Society. ISBN 9780821821176.