कठोर रोटर: Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
{{Short description|Model of rotating physical systems}}
{{Short description|Model of rotating physical systems}}
{{redir|आणविक घुमाव
{{redir|आणविक घुमाव
|एक अणु के भीतर बंधन-घूर्णन
|अणु के भीतर बंध-घूर्णन
|गठनात्मक समावयवता
|रूपात्मक समरूपता।
}}
}}


[[रोटरडायनामिक्स]] में, '''कठोर रोटर''' [[ ROTATION | घूर्णन]] प्रणालियों का यांत्रिक मॉडल है। स्वेच्छाचारी कठोर रोटर 3-आयामी कठोर वस्तु है, जैसे शीर्ष। अंतरिक्ष में ऐसी वस्तु को उन्मुख करने के लिए तीन कोणों की आवश्यकता होती है, जिन्हें [[यूलर कोण]] कहा जाता है। एक विशेष कठोर रोटर ''रैखिक रोटर'' है, जिसे वर्णन करने के लिए केवल दो कोणों की आवश्यकता होती है, उदाहरण के लिए डायटोमिक [[अणु]]। अधिक सामान्य अणु 3-आयामी होते है, जैसे पानी (असममित रोटर), [[अमोनिया]] (सममित रोटर), या [[मीथेन]] (गोलाकार रोटर)।
[[रोटरडायनामिक्स]] में, '''कठोर रोटर''' [[ ROTATION | घूर्णन]] प्रणालियों का यांत्रिक मॉडल है। स्वेच्छाचारी कठोर रोटर 3-आयामी कठोर वस्तु है, जैसे शीर्ष। अंतरिक्ष में ऐसी वस्तु को उन्मुख करने के लिए तीन कोणों की आवश्यकता होती है, जिन्हें [[यूलर कोण]] कहा जाता है।विशेष कठोर रोटर ''रैखिक रोटर'' है, जिसे वर्णन करने के लिए केवल दो कोणों की आवश्यकता होती है, उदाहरण के लिए डायटोमिक [[अणु]]। अधिक सामान्य अणु 3-आयामी होते है, जैसे पानी (असममित रोटर), [[अमोनिया]] (सममित रोटर), या [[मीथेन]] (गोलाकार रोटर)।


== रैखिक रोटर ==
== रैखिक रोटर ==
रैखिक कठोर रोटर मॉडल में द्रव्यमान के केंद्र से निश्चित दूरी पर स्थित दो बिंदु द्रव्यमान होते हैं। दो द्रव्यमानों और द्रव्यमानों के मूल्यों के बीच की निश्चित दूरी कठोर मॉडल की एकमात्र विशेषता है। हालाँकि, कई वास्तविक डायटोमिक्स के लिए यह मॉडल बहुत अधिक प्रतिबंधात्मक है क्योंकि दूरियाँ सामान्यतः पूरी तरह से तय नहीं होती हैं। दूरी में छोटे बदलावों की भरपाई के लिए कठोर मॉडल में सुधार किए जा सकते हैं। ऐसे मामले में भी कठोर रोटर मॉडल प्रस्थान का उपयोगी बिंदु है (शून्य-क्रम मॉडल)।
रैखिक कठोर रोटर मॉडल में द्रव्यमान के केंद्र से निश्चित दूरी पर स्थित दो बिंदु द्रव्यमान होते हैं। दो द्रव्यमानों और द्रव्यमानों के मूल्यों के बीच की निश्चित दूरी कठोर मॉडल की एकमात्र विशेषता है। तथापि, कई वास्तविक डायटोमिक्स के लिए यह मॉडल बहुत अधिक प्रतिबंधात्मक है क्योंकि दूरियाँ सामान्यतः पूरी तरह से तय नहीं होती हैं। दूरी में छोटे बदलावों की भरपाई के लिए कठोर मॉडल में सुधार किए जा सकते हैं। ऐसे मामले में भी कठोर रोटर मॉडल प्रस्थान का उपयोगी बिंदु है (शून्य-क्रम मॉडल)।


=== शास्त्रीय रैखिक कठोर रोटर ===
=== शास्त्रीय रैखिक कठोर रोटर ===
Line 368: Line 368:


== आणविक घुमावों का प्रत्यक्ष प्रायोगिक अवलोकन ==
== आणविक घुमावों का प्रत्यक्ष प्रायोगिक अवलोकन ==
लंबे समय तक, प्रयोगात्मक रूप से आणविक घुमावों को प्रत्यक्ष रूप से नहीं देखा जा सकता था। परमाणु संकल्प के साथ केवल मापन तकनीकों ने एकल अणु के घूर्णन का पता लगाना संभव बना दिया।<ref>{{citation|surname1=J. K. Gimzewski|surname2=C. Joachim|surname3=R. R. Schlittler|surname4=V. Langlais|surname5=H. Tang|surname6=I. Johannsen|periodical=Science|title=Rotation of a Single Molecule Within a Supramolecular Bearing |volume=281|issue=5376|pages=531–533| date=1998|language=German|doi=10.1126/science.281.5376.531| pmid=9677189| bibcode=1998Sci...281..531G|url=http://orbit.dtu.dk/en/publications/rotation-of-a-single-molecule-within-a-supramolecular-bearing(f02c28e8-a144-4f4c-8aaa-b63714905610).html}}</ref><ref name="ReferenceA">{{citation|surname1=Thomas Waldmann| surname2=Jens Klein|surname3=Harry E. Hoster|surname4=R. Jürgen Behm|periodical=ChemPhysChem|title=Stabilization of Large Adsorbates by Rotational Entropy: A Time-Resolved Variable-Temperature STM Study |volume=14 | pages=162–169| date=2012|issue=1 | language=de | doi=10.1002/cphc.201200531|pmid=23047526|s2cid=36848079 }}</ref> कम तापमान पर, अणुओं (या उसके भाग) के घूर्णन को स्थिर किया जा सकता [[स्कैनिंग टनलिंग माइक्रोस्कोप]] को स्कैन करके इसे प्रत्यक्ष रूप से देखा जा सकता है यानी घूर्णी एन्ट्रापी द्वारा उच्च तापमान पर स्थिरीकरण की व्याख्या की जा सकती है।<ref name="ReferenceA"/> एकल अणु स्तर पर घूर्णी उत्तेजना का प्रत्यक्ष अवलोकन हाल ही में स्कैनिंग टनलिंग माइक्रोस्कोप के साथ इनलेस्टिक इलेक्ट्रॉन टनलिंग स्पेक्ट्रोस्कोपी का उपयोग करके प्राप्त किया गया था। आणविक हाइड्रोजन और उसके समस्थानिकों के घूर्णी उत्तेजना का पता लगाया गया।<ref>{{Cite journal |last=Li |first=Shaowei |last2=Yu |first2=Arthur |last3=Toledo |first3=Freddy |last4=Han |first4=Zhumin |last5=Wang |first5=Hui |last6=He |first6=H. Y. |last7=Wu |first7=Ruqian |last8=Ho |first8=W. |date=2013-10-02 |title=ट्यून करने योग्य आयाम के एक नैनोकैविटी के भीतर फंसे हाइड्रोजन अणु के घूर्णी और कंपन संबंधी उत्तेजना|url=http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.146102 |journal=Physical Review Letters |language=en |volume=111 |issue=14 |pages=146102 |doi=10.1103/PhysRevLett.111.146102 |issn=0031-9007}}</ref><ref>{{Cite journal |last=Natterer |first=Fabian Donat |last2=Patthey |first2=François |last3=Brune |first3=Harald |date=2013-10-24 |title=स्कैनिंग टनलिंग माइक्रोस्कोप के साथ न्यूक्लियर स्पिन स्टेट्स का भेद|url=https://link.aps.org/doi/10.1103/PhysRevLett.111.175303 |journal=Physical Review Letters |language=en |volume=111 |issue=17 |pages=175303 |doi=10.1103/PhysRevLett.111.175303 |issn=0031-9007}}</ref>
लंबे समय तक, प्रयोगात्मक रूप से आणविक घुमावों को प्रत्यक्ष रूप से नहीं देखा जा सकता था। केवल परमाणु विभेदन वाली मापन तकनीकों ने ही एकल अणु के घूर्णन का पता लगाना संभव बनाया।<ref>{{citation|surname1=J. K. Gimzewski|surname2=C. Joachim|surname3=R. R. Schlittler|surname4=V. Langlais|surname5=H. Tang|surname6=I. Johannsen|periodical=Science|title=Rotation of a Single Molecule Within a Supramolecular Bearing |volume=281|issue=5376|pages=531–533| date=1998|language=German|doi=10.1126/science.281.5376.531| pmid=9677189| bibcode=1998Sci...281..531G|url=http://orbit.dtu.dk/en/publications/rotation-of-a-single-molecule-within-a-supramolecular-bearing(f02c28e8-a144-4f4c-8aaa-b63714905610).html}}</ref><ref name="ReferenceA">{{citation|surname1=Thomas Waldmann| surname2=Jens Klein|surname3=Harry E. Hoster|surname4=R. Jürgen Behm|periodical=ChemPhysChem|title=Stabilization of Large Adsorbates by Rotational Entropy: A Time-Resolved Variable-Temperature STM Study |volume=14 | pages=162–169| date=2012|issue=1 | language=de | doi=10.1002/cphc.201200531|pmid=23047526|s2cid=36848079 }}</ref> कम तापमान पर, अणुओं (या उसके भाग) के घूर्णन को स्थिर किया जा सकता इसे सीधे तौर पर [[स्कैनिंग टनलिंग माइक्रोस्कोप]] को स्कैन करके इसे प्रत्यक्ष रूप से देखा जा सकता है यानी घूर्णी एन्ट्रापी द्वारा उच्च तापमान पर स्थिरीकरण की व्याख्या की जा सकती है।<ref name="ReferenceA"/> एकल अणु स्तर पर घूर्णी उत्तेजना का प्रत्यक्ष अवलोकन हाल ही में स्कैनिंग टनलिंग माइक्रोस्कोप के साथ इनलेस्टिक इलेक्ट्रॉन टनलिंग स्पेक्ट्रोस्कोपी का उपयोग करके प्राप्त किया गया था। आणविक हाइड्रोजन और उसके समस्थानिकों के आवर्तनशील उत्तेजना का पता लगाया गया।<ref>{{Cite journal |last=Li |first=Shaowei |last2=Yu |first2=Arthur |last3=Toledo |first3=Freddy |last4=Han |first4=Zhumin |last5=Wang |first5=Hui |last6=He |first6=H. Y. |last7=Wu |first7=Ruqian |last8=Ho |first8=W. |date=2013-10-02 |title=ट्यून करने योग्य आयाम के एक नैनोकैविटी के भीतर फंसे हाइड्रोजन अणु के घूर्णी और कंपन संबंधी उत्तेजना|url=http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.146102 |journal=Physical Review Letters |language=en |volume=111 |issue=14 |pages=146102 |doi=10.1103/PhysRevLett.111.146102 |issn=0031-9007}}</ref><ref>{{Cite journal |last=Natterer |first=Fabian Donat |last2=Patthey |first2=François |last3=Brune |first3=Harald |date=2013-10-24 |title=स्कैनिंग टनलिंग माइक्रोस्कोप के साथ न्यूक्लियर स्पिन स्टेट्स का भेद|url=https://link.aps.org/doi/10.1103/PhysRevLett.111.175303 |journal=Physical Review Letters |language=en |volume=111 |issue=17 |pages=175303 |doi=10.1103/PhysRevLett.111.175303 |issn=0031-9007}}</ref>


== यह भी देखें ==
== यह भी देखें ==

Revision as of 20:26, 30 May 2023

रोटरडायनामिक्स में, कठोर रोटर घूर्णन प्रणालियों का यांत्रिक मॉडल है। स्वेच्छाचारी कठोर रोटर 3-आयामी कठोर वस्तु है, जैसे शीर्ष। अंतरिक्ष में ऐसी वस्तु को उन्मुख करने के लिए तीन कोणों की आवश्यकता होती है, जिन्हें यूलर कोण कहा जाता है।विशेष कठोर रोटर रैखिक रोटर है, जिसे वर्णन करने के लिए केवल दो कोणों की आवश्यकता होती है, उदाहरण के लिए डायटोमिक अणु। अधिक सामान्य अणु 3-आयामी होते है, जैसे पानी (असममित रोटर), अमोनिया (सममित रोटर), या मीथेन (गोलाकार रोटर)।

रैखिक रोटर

रैखिक कठोर रोटर मॉडल में द्रव्यमान के केंद्र से निश्चित दूरी पर स्थित दो बिंदु द्रव्यमान होते हैं। दो द्रव्यमानों और द्रव्यमानों के मूल्यों के बीच की निश्चित दूरी कठोर मॉडल की एकमात्र विशेषता है। तथापि, कई वास्तविक डायटोमिक्स के लिए यह मॉडल बहुत अधिक प्रतिबंधात्मक है क्योंकि दूरियाँ सामान्यतः पूरी तरह से तय नहीं होती हैं। दूरी में छोटे बदलावों की भरपाई के लिए कठोर मॉडल में सुधार किए जा सकते हैं। ऐसे मामले में भी कठोर रोटर मॉडल प्रस्थान का उपयोगी बिंदु है (शून्य-क्रम मॉडल)।

शास्त्रीय रैखिक कठोर रोटर

शास्त्रीय रैखिक रोटर में दो बिंदु द्रव्यमान होते हैं और (कम द्रव्यमान के साथ ) दूरी पर एक दूसरे के रोटर कठोर है अगर समय से स्वतंत्र है। रैखिक कठोर रोटर की शुद्धगतिकी को सामान्यतः गोलाकार ध्रुवीय निर्देशांक के माध्यम से वर्णित किया जाता है, जो R3 की समन्वय प्रणाली बनाते है। भौतिकी परिपाटी में निर्देशांक सह-अक्षांश (आंचल) कोण होते हैं , अनुदैर्ध्य (दिगंश) कोण और दूरी . कोण अंतरिक्ष में रोटर के उन्मुखीकरण को निर्दिष्ट करते हैं। गतिज ऊर्जा रैखिक कठोर रोटर द्वारा दिया जाता है

कहाँ और स्केल (या अपूर्ण) कारक हैं।

क्वांटम यांत्रिक अनुप्रयोगों के लिए स्केल कारक महत्वपूर्ण हैं क्योंकि वे घुमावदार निर्देशांक में व्यक्त लाप्लासियन में प्रवेश करते हैं। हाथ में मामले में (निरंतर )

रैखिक कठोर रोटर का शास्त्रीय हैमिल्टनी फलन है

क्वांटम यांत्रिक रैखिक कठोर रोटर

डायटोमिक अणु की घूर्णी ऊर्जा की भविष्यवाणी करने के लिए रैखिक कठोर रोटर मॉडल का उपयोग क्वांटम यांत्रिकी में किया जा सकता है। घूर्णी ऊर्जा प्रणाली के लिए जड़त्व के क्षण पर निर्भर करती है, . जन संदर्भ फ्रेम के केंद्र में, जड़त्व का क्षण बराबर होता है:

कहाँ अणु का घटा हुआ द्रव्यमान है और दो परमाणुओं के बीच की दूरी है।

क्वांटम यांत्रिकी के अनुसार, श्रोडिंगर समीकरण को हल करके प्रणाली के ऊर्जा स्तर को निर्धारित किया जा सकता है

कहाँ तरंग फलन है और ऊर्जा (हैमिल्टनियन) ऑपरेटर है। क्षेत्र-मुक्त स्थान में कठोर रोटर के लिए, ऊर्जा ऑपरेटर प्रणाली की गतिज ऊर्जा से मेल खाती है[1]

कहाँ घटता है प्लांक स्थिरांक और लाप्लासियन है। लाप्लासियन गोलाकार ध्रुवीय निर्देशांक के संदर्भ में ऊपर दिया गया है। इन निर्देशांकों के संदर्भ में लिखा गया ऊर्जा संचालक है

रेडियल भाग के अलग होने के बाद यह ऑपरेटर हाइड्रोजन परमाणु के श्रोडिंगर समीकरण में भी प्रकट होता है। आइगेनवैल्यू समीकरण बन जाता है
प्रतीक गोलाकार हार्मोनिक्स के रूप में ज्ञात कार्यों के एक सेट का प्रतिनिधित्व करता है। ध्यान दें कि ऊर्जा निर्भर नहीं करती है . शक्ति
है -गुना अध: पतन: निश्चित के साथ कार्य करता है और में समान ऊर्जा है।

घूर्णी स्थिरांक का परिचय , हम लिखते हैं,

व्युत्क्रम लंबाई की इकाइयों में घूर्णी स्थिरांक है,
c प्रकाश की गति के साथ। यदि सीजीएस इकाइयों के लिए उपयोग किया जाता है , , और , को सेमी-1, या तरंग संख्या में व्यक्त किया जाता है, जो एक ऐसी इकाई है जिसका उपयोग अक्सर घूर्णी-कंपन स्पेक्ट्रोमिकी के लिए किया जाता है। घूर्णी स्थिरांक दूरी पर निर्भर करता है . प्राय: कोई लिखता है जहां का संतुलन मूल्य है (वह मान जिसके लिए रोटर में परमाणुओं की अंतःक्रियात्मक ऊर्जा न्यूनतम होती है)।

विशिष्ट घूर्णी अवशोषण स्पेक्ट्रम में चोटियों की एक श्रृंखला होती है जो कोणीय गति क्वांटम संख्या के विभिन्न मूल्यों के साथ स्तरों के बीच संक्रमण के अनुरूप होती है () ऐसा है कि , चयन नियमों के कारण (नीचे देखें)। नतीजतन, घूर्णी चोटियाँ पूर्णांक गुणक के अनुरूप अंतर वाली ऊर्जाओं में दिखाई देती है .

चयन नियम

अणु का घूर्णी संक्रमण तब होता है जब अणु फोटॉन [मात्राबद्ध विद्युत चुम्बकीय (ईएम) क्षेत्र का एक कण] को अवशोषित करता है। फोटॉन की ऊर्जा (अर्थात्, एम क्षेत्र की तरंग दैर्ध्य) के आधार पर इस संक्रमण को कंपन और/या के साइडबैंड के रूप में देखा जा सकता है। इलेक्ट्रॉनिक संक्रमण शुद्ध घूर्णी संक्रमण, जिसमें वाइब्रोनिक (= वाइब्रेशनल प्लस इलेक्ट्रॉनिक) वेव फंक्शन नहीं बदलता है, इलेक्ट्रोमैग्नेटिक स्पेक्ट्रम के माइक्रोवेव क्षेत्र में होता है।

सामान्यतः, घूर्णी संक्रमण केवल तभी देखे जा सकते हैं जब कोणीय गति क्वांटम संख्या में परिवर्तन होता है . यह चयन नियम समय-निर्भर श्रोडिंगर समीकरण के प्रथम-क्रम गड़बड़ी सिद्धांत सन्निकटन से उत्पन्न होता है। इस उपचार के अनुसार, घूर्णी संक्रमण केवल तभी देखे जा सकते हैं जब डिपोल क्वांटम यांत्रिक द्विध्रुवीय संचालक के एक या अधिक घटकों में एक गैर-लुप्त होने वाला संक्रमण क्षण होता है। अगर आने वाली विद्युत चुम्बकीय तरंग के विद्युत क्षेत्र घटक की दिशा है, संक्रमण का क्षण है,

संक्रमण तब होता है जब यह अभिन्न शून्य नहीं होता है। वाइब्रोनिक भाग से आणविक तरंग फ़ंक्शन के घूर्णी भाग को अलग करके, कोई यह दिखा सकता है कि इसका अर्थ है कि अणु में एक स्थायी द्विध्रुवीय आणविक द्विध्रुव होना चाहिए। वाइब्रोनिक निर्देशांक पर एकीकरण के बाद संक्रमण क्षण का निम्नलिखित घूर्णी भाग बना रहता है,

यहाँ स्थायी द्विध्रुव आघूर्ण का z घटक है। क्षण द्विध्रुव संचालिका का कंपनिक रूप से औसत घटक है। विषमनाभिकीय अणु के अक्ष के साथ-साथ स्थायी द्विध्रुव का केवल घटक ही लुप्त नहीं होता है। गोलाकार हार्मोनिक्स की ऑर्थोगोनलिटी के उपयोग से यह निर्धारित करना संभव है कि के कौन से मूल्य हैं , , , और द्विध्रुव संक्रमण आघूर्ण समाकल के लिए शून्येतर मान प्राप्त होंगे। कठोर रोटर के लिए देखे गए चयन नियमों में यह बाधा परिणाम है

गैर-कठोर रैखिक रोटर

कठोर रोटर सामान्यतः डायटोमिक अणुओं की घूर्णन ऊर्जा का वर्णन करने के लिए प्रयोग किया जाता है लेकिन यह ऐसे अणुओं का पूरी तरह सटीक वर्णन नहीं है। ऐसा इसलिए है क्योंकि आणविक बंधन (और इसलिए अंतर-परमाणु दूरी ) पूरी तरह से स्थिर नहीं हैं, परमाणुओं के बीच का बंधन फैलता है क्योंकि अणु तेजी से घूमता है (घूर्णी क्वांटम संख्या के उच्च मूल्य ). इस प्रभाव को केन्द्रापसारक विरूपण स्थिरांक के रूप में जाना जाने वाला एक सुधार कारक पेश करके देखा जा सकता है (विभिन्न मात्राओं के शीर्ष पर बार इंगित करते हैं कि ये मात्राएँ सेमी-1 में व्यक्त की गई हैं):

कहाँ

  • बांड की मौलिक कंपन आवृत्ति है (सेमी-1 में)। यह आवृत्ति कम द्रव्यमान और अणु के बल स्थिरांक (बंध शक्ति) के अनुसार संबंधित है

गैर-कठोर रोटर डायटोमिक अणुओं के लिए स्वीकार्य रूप से सटीक मॉडल है लेकिन अभी भी कुछ हद तक अपूर्ण है। ऐसा इसलिए है, क्योंकि मॉडल रोटेशन के कारण बंधन के खिंचाव के लिए जिम्मेदार है, लेकिन यह बंधन में कंपन ऊर्जा (क्षमता में धार्मिकता) के कारण किसी भी बंधन के खिंचाव की उपेक्षा करता है।

मनमाने ढंग से आकार का कठोर रोटर

मनमाने ढंग से आकार का कठोर रोटर मनमाना आकार का कठोर पिंड होता है, जिसके द्रव्यमान का केंद्र क्षेत्र-मुक्त स्थान R3 में स्थिर (या एकसमान सीधीरेखीय गति में) होता है, ताकि इसकी ऊर्जा में केवल घूर्णी गतिज ऊर्जा (और संभवतः निरंतर अनुवाद ऊर्जा जिसे अनदेखा किया जा सके)। कठोर पिंड को (आंशिक रूप से) इसके जड़त्व क्षण के तीन आइजेनमानों द्वारा चित्रित किया जा सकता है, जो वास्तविक गैर-ऋणात्मक मान हैं जिन्हें जड़त्व के प्रमुख क्षणों के रूप में जाना जाता है। माइक्रोवेव स्पेक्ट्रोस्कोपी में - घूर्णी संक्रमण के आधार पर स्पेक्ट्रोस्कोपी - सामान्यतः अणुओं (कठोर रोटर के रूप में देखा जाता है) को वर्गीकृत किया जाता है:

  • गोलाकार रोटर
  • सममित रोटर
    • चपटा सममित रोटर
    • लम्बी सममित रोटर
  • असममित रोटर

यह वर्गीकरण जड़त्व के प्रमुख आघूर्णों के सापेक्ष परिमाण पर निर्भर करता है।

कठोर रोटर के निर्देशांक

भौतिकी और इंजीनियरिंग की विभिन्न शाखाएँ कठोर रोटर के गतिकी के विवरण के लिए अलग-अलग निर्देशांक का उपयोग करती हैं। आणविक भौतिकी में यूलर कोण लगभग विशेष रूप से उपयोग किए जाते हैं। क्वांटम यांत्रिकी अनुप्रयोगों में यूलर कोणों का उपयोग करना लाभप्रद होता है, जो गोलाकार ध्रुवीय निर्देशांक के भौतिक सम्मेलन का सरल विस्तार है।

पहला कदम रोटर (बॉडी-फिक्स्ड फ्रेम) के लिए दाएं हाथ के ऑर्थोनॉर्मल फ्रेम (ऑर्थोगोनल अक्ष की 3-आयामी प्रणाली) का लगाव है। इस फ्रेम को मनमाने ढंग से बॉडी से जोड़ा जा सकता है, परंतु अक्सर प्रमुख अक्ष फ्रेम का उपयोग करता है - जड़त्व टेंसर के सामान्यीकृत ईजेनवेक्टर, जिसे हमेशा ऑर्थोनॉर्मल चुना जा सकता है, क्योंकि टेंसर सममित मैट्रिक्स है। जब रोटर में समरूपता-अक्ष होता है, तो यह सामान्यतः प्रमुख अक्षों में से एक के साथ मेल खाता है। यह चुनना सुविधाजनक है बॉडी-फिक्स्ड z-अक्ष के रूप में उच्चतम-क्रम समरूपता अक्ष।

स्पेस-फिक्स्ड फ्रेम (प्रयोगशाला अक्ष) के साथ बॉडी-फिक्स्ड फ्रेम को संरेखित करके शुरू होता है, ताकि बॉडी-फिक्स्ड x, y, और z अक्ष के साथ मेल खाते हों। दूसरे, बॉडी और उसके फ्रेम को सकारात्मक कोण पर सक्रिय रूप से घुमाया जाता है z-अक्ष के चारों ओर (दाएँ हाथ के नियम द्वारा), जो गति करता है - तक -अक्ष। तीसरा, सकारात्मक कोण पर बॉडी और उसके फ्रेम को घुमाता है के चारों ओर -अक्ष। बॉडी-फिक्स्ड फ्रेम के z- अक्ष में इन दो घुमावों के बाद अनुदैर्ध्य कोण होता है (सामान्यतः नामित ) और अक्षांश कोण (सामान्यतः नामित ), दोनों स्पेस-फिक्स्ड फ्रेम के संबंध में। यदि रोटर अपने जेड-अक्ष के चारों ओर बेलनाकार सममित था, जैसे रैखिक कठोर रोटर, अंतरिक्ष में इसका अभिविन्यास स्पष्ट रूप से इस बिंदु पर निर्दिष्ट किया जाएगा।

यदि बॉडी में सिलेंडर (अक्षीय) समरूपता का अभाव है, तो इसके z- अक्ष के चारों ओर अंतिम घुमाव (जिसमें ध्रुवीय निर्देशांक होते हैं और ) इसके अभिविन्यास को पूरी तरह से निर्दिष्ट करना आवश्यक है। परंपरागत रूप से अंतिम घूर्णन कोण कहा जाता है .

यहाँ वर्णित यूलर कोण सम्मेलनों को इस रूप में जाना जाता है सम्मेलन, यह दिखाया जा सकता है (यूलर कोण परिभाषा के समान) कि यह इसके बराबर है सम्मेलन जिसमें घुमावों का क्रम उलटा होता है।

लगातार तीन घुमावों का कुल मैट्रिक्स उत्पाद है

होने देना एक मनमानी बिंदु के समन्वय वेक्टर बनें बॉडी-फिक्स्ड फ्रेम के संबंध में बॉडी में। के तत्व के 'बॉडी-फिक्स्ड कोऑर्डिनेट' हैं . शुरू में का स्पेस-फिक्स्ड कोऑर्डिनेट वेक्टर भी है . बॉडी के घूमने पर, बॉडी के निश्चित निर्देशांक नहीं बदलते हैं, लेकिन स्पेस-फिक्स्ड कोऑर्डिनेट वेक्टर हो जाता है,
विशेष रूप से, अगर प्रारंभ में स्पेस-फिक्स्ड Z- अक्ष पर है, इसमें स्पेस-फिक्स्ड निर्देशांक हैं
जो गोलाकार समन्वय प्रणाली (भौतिक सम्मेलन में) के साथ पत्राचार दिखाता है।

टाइम टी और प्रारंभिक निर्देशांक के कार्य के रूप में यूलर कोणों का ज्ञान कठोर रोटर के गतिकी निर्धारित करें।

शास्त्रीय गतिज ऊर्जा

निम्नलिखित पाठ किसी वस्तु की घूर्णी ऊर्जा के प्रसिद्ध विशेष मामले का सामान्यीकरण करता है जो एक अक्ष के चारों ओर घूमता है।

यहाँ से यह मान लिया जाएगा कि बॉडी-फिक्स्ड फ्रेम प्रमुख अक्ष फ्रेम है, यह जड़त्व टेंसर के तात्क्षणिक आघूर्ण को विकर्णित कर देता है (स्पेस-फिक्स्ड फ्रेम के संबंध में व्यक्त), यानी,

जहां यूलर कोण समय-निर्भर होते हैं और वास्तव में समय की निर्भरता निर्धारित करते हैं इस समीकरण के व्युत्क्रम से। इस अंकन का तात्पर्य है उस पर यूलर कोण शून्य हैं, ताकि पर बॉडी-फिक्स्ड फ्रेम स्पेस-फिक्स्ड फ्रेम के साथ मेल खाता है।

कठोर रोटर की शास्त्रीय गतिज ऊर्जा T को विभिन्न तरीकों से व्यक्त किया जा सकता है:

  • कोणीय वेग के कार्य के रूप में
  • लाग्रंगियन रूप में
  • कोणीय गति के कार्य के रूप में
  • हैमिल्टनियन रूप में।

चूंकि इनमें से प्रत्येक रूप का अपना उपयोग है और पाठ्यपुस्तकों में पाया जा सकता है, इसलिए हम उन सभी को प्रस्तुत करेंगे।

कोणीय वेग रूप

कोणीय वेग टी के समारोह के रूप में पढ़ता है,

साथ
सदिश बाईं ओर बॉडी-स्थिर फ्रेम के संबंध में व्यक्त रोटर के कोणीय वेग के घटक होते हैं। कोणीय वेग गति के समीकरणों को यूलर के समीकरणों के रूप में जाना जाता है (शून्य लागू टोक़ के साथ, चूंकि धारणा से रोटर क्षेत्र-मुक्त स्थान में है)। यह दिखाया जा सकता है सामान्य वेग के विपरीत, किसी सदिश का व्युत्पन्न समय नहीं है।[2] दाहिने हाथ की ओर समय-निर्भर यूलर कोणों पर डॉट्स विभेदन के लिए न्यूटन के अंकन का संकेत देते हैं। ध्यान दें कि उपयोग किए गए यूलर कोण सम्मेलन के एक अलग विकल्प से एक अलग रोटेशन मैट्रिक्स का परिणाम होगा।

लैग्रेंज रूप

की अभिव्यक्ति का बैकप्रतिस्थापन में T लाग्रंगियन रूप में गतिज ऊर्जा देता है (यूलर कोणों के समय व्युत्पन्न के एक समारोह के रूप में)। मैट्रिक्स-वेक्टर नोटेशन में,

कहाँ यूलर कोणों में व्यक्त मीट्रिक टेन्सर व्यक्त किया है—वक्रीय निर्देशांकों की एक गैर-ऑर्थोगोनल प्रणाली—

कोणीय संवेग रूप

अक्सर गतिज ऊर्जा को कोणीय संवेग कोणीय संवेग के फलन के रूप में लिखा जाता है कठोर रोटर की । बॉडी-फिक्स्ड फ्रेम के संबंध में इसमें घटक होते हैं , और कोणीय वेग से संबंधित दिखाया जा सकता है,

यह कोणीय गति एक संरक्षित (समय-स्वतंत्र) मात्रा है अगर स्थिर स्थान-स्थिर फ्रेम से देखा जाए। चूंकि बॉडी-फिक्स्ड फ्रेम चलता है (समय पर निर्भर करता है) घटक समय स्वतंत्र नहीं हैं। अगर हम प्रतिनिधित्व करते स्थिर स्थान-स्थिर फ्रेम के संबंध में, हम इसके घटकों के लिए समय स्वतंत्र अभिव्यक्ति पाएंगे।

कोणीय गति के संदर्भ में गतिज ऊर्जा व्यक्त की जाती है

हैमिल्टन फॉर्म

गतिज ऊर्जा का हैमिल्टन रूप को सामान्यीकृत संवेग के रूप में लिखा गया है

जहां यह प्रयोग किया जाता है कि सममित है। हैमिल्टन रूप में गतिज ऊर्जा है,
व्युत्क्रम मीट्रिक टेन्सर द्वारा दिया गया