गिलेस्पी एल्गोरिथम: Difference between revisions

From Vigyanwiki
No edit summary
 
Line 93: Line 93:
* (येट्स क्लिंगबिल 2013): {{cite journal |author1=येट्स, क्रिश्चियन ए. |author2=क्लिंगबिल, गुइडो |title=स्टोचैस्टिक सिमुलेशन एल्गोरिथ्म में यादृच्छिक संख्याओं का पुनर्चक्रण |journal=भौतिक रसायन विज्ञान की वार्षिक समीक्षा |volume=58 |pages=094103 |year=2013 |doi=10.1063/1.4792207 |pmid=23485273 |issue=9 |bibcode=2013जेसीएचपीएच .138i4103वाई |url=https://ora.ox.ac.uk/objects/uuid:502bcf01-26b2-47ad-9427-e7e5c1d0c604 }}
* (येट्स क्लिंगबिल 2013): {{cite journal |author1=येट्स, क्रिश्चियन ए. |author2=क्लिंगबिल, गुइडो |title=स्टोचैस्टिक सिमुलेशन एल्गोरिथ्म में यादृच्छिक संख्याओं का पुनर्चक्रण |journal=भौतिक रसायन विज्ञान की वार्षिक समीक्षा |volume=58 |pages=094103 |year=2013 |doi=10.1063/1.4792207 |pmid=23485273 |issue=9 |bibcode=2013जेसीएचपीएच .138i4103वाई |url=https://ora.ox.ac.uk/objects/uuid:502bcf01-26b2-47ad-9427-e7e5c1d0c604 }}
* {{cite journal |author=गिलेस्पी, डेनियल टी. |title=रासायनिक काइनेटिक्स का स्टोचैस्टिक सिमुलेशन |journal=भौतिक रसायन विज्ञान की वार्षिक समीक्षा  |volume=58 |pages=35–55 |year=2007 |doi=10.1146/अनुरेव.फिश्चेम.58.032806.104637 |pmid=17037977 |bibcode=2007एआरपीसी...58...35जी }}
* {{cite journal |author=गिलेस्पी, डेनियल टी. |title=रासायनिक काइनेटिक्स का स्टोचैस्टिक सिमुलेशन |journal=भौतिक रसायन विज्ञान की वार्षिक समीक्षा  |volume=58 |pages=35–55 |year=2007 |doi=10.1146/अनुरेव.फिश्चेम.58.032806.104637 |pmid=17037977 |bibcode=2007एआरपीसी...58...35जी }}
[[Category: रासायनिक गतिकी]] [[Category: कम्प्यूटेशनल रसायन विज्ञान]] [[Category: मोंटे कार्लो के तरीके]] [[Category: स्टोचैस्टिक सिमुलेशन]]


 
[[Category:All articles needing additional references]]
 
[[Category:All articles that may contain original research]]
[[Category: Machine Translated Page]]
[[Category:All articles to be expanded]]
[[Category:All articles with unsourced statements]]
[[Category:Articles needing additional references from April 2021]]
[[Category:Articles that may contain original research from April 2021]]
[[Category:Articles to be expanded from April 2023]]
[[Category:Articles using small message boxes]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with unsourced statements from June 2012]]
[[Category:CS1 English-language sources (en)]]
[[Category:CS1 errors]]
[[Category:Created On 18/05/2023]]
[[Category:Created On 18/05/2023]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:कम्प्यूटेशनल रसायन विज्ञान]]
[[Category:मोंटे कार्लो के तरीके]]
[[Category:रासायनिक गतिकी]]
[[Category:स्टोचैस्टिक सिमुलेशन]]

Latest revision as of 15:30, 6 June 2023

संभाव्यता सिद्धांत में, गिलेस्पी एल्गोरिथम (या डोब-गिलेस्पी एल्गोरिथम या स्टोचैस्टिक सिमुलेशन एल्गोरिथम , एसएसए) एक स्टोकेस्टिक समीकरण प्रणाली का एक सांख्यिकीय रूप से सही प्रक्षेपवक्र (संभावित समाधान) उत्पन्न करता है जिसके लिए प्रतिक्रिया दर ज्ञात होती है। यह जोसेफ एल. डोब और अन्य (लगभग 1945) द्वारा बनाया गया था, जो 1976 में और गिलेस्पी द्वारा प्रस्तुत किया गया था, और 1977 में एक पेपर में लोकप्रिय हुआ, जहां वह सीमित कम्प्यूटेशनल शक्ति का उपयोग करके कुशलतापूर्वक और सटीक रूप से प्रतिक्रियाओं के रासायनिक या जैव रासायनिक प्रणालियों का अनुकरण करने के लिए इसका उपयोग करता है। स्टोचैस्टिक सिमुलेशन)।[1] जैसे-जैसे कंप्यूटर तेज होते गए हैं, एल्गोरिद्म का उपयोग तेजी से जटिल प्रणालियों का अनुकरण करने के लिए किया गया है। एल्गोरिथ्म विशेष रूप से कोशिकाओं के भीतर प्रतिक्रियाओं का अनुकरण करने के लिए उपयोगी है, जहां अभिकर्मकों की संख्या कम है और व्यक्तिगत अणुओं की स्थिति और व्यवहार पर नज़र रखना कम्प्यूटेशनल रूप से संभव है। गणितीय रूप से, यह गतिशील मोंटे कार्लो पद्धति का एक प्रकार है और गतिज मोंटे कार्लो विधियों के समान है। कम्प्यूटेशनल सिस्टम बायोलॉजी में इसका अत्यधिक उपयोग किया जाता है।[citation needed]

इतिहास

एल्गोरिथम की ओर ले जाने वाली प्रक्रिया कई महत्वपूर्ण चरणों को पहचानती है। 1931 में, एंड्री कोलमोगोरोव ने स्टोकेस्टिक प्रक्रियाओं के समय-विकास के अनुरूप विभेदक समीकरण प्रस्तुत किए, जो छलांग लगाकर आगे बढ़ते हैं, जिसे आज कोलमोगोरोव समीकरण (मार्कोव जंप प्रक्रिया) के रूप में जाना जाता है (एक सरलीकृत संस्करण को प्राकृतिक विज्ञान में मास्टर समीकरण के रूप में जाना जाता है)। यह 1940 में विलियम फेलर थे, जिन्होंने उन स्थितियों का पता लगाया, जिनके तहत कोलमोगोरोव समीकरणों ने समाधान के रूप में (उचित) संभावनाओं को स्वीकार किया। अपने प्रमेय I (1940 कार्य) में उन्होंने स्थापित किया कि समय-से-अगली छलांग घातीय रूप से वितरित की गई थी और अगली घटना की संभावना दर के समानुपाती होती है। जैसे, उन्होंने कोलमोगोरोव के समीकरणों के संबंध को स्टोकेस्टिक प्रक्रियाओं के साथ स्थापित किया।

बाद में, दूब (1942, 1945) ने फेलर के समाधान को शुद्ध-कूद प्रक्रियाओं के घटना से परे बढ़ाया। मैनचेस्टर मार्क 1 कंप्यूटर का उपयोग करके डेविड जॉर्ज केंडल (1950) द्वारा कंप्यूटर में विधि लागू की गई थी और बाद में मौरिस एस बार्टलेट (1953) द्वारा महामारी के प्रकोप के अपने अध्ययन में उपयोग किया गया था। गिलेस्पी (1977) एक भौतिक तर्क का उपयोग करके एल्गोरिथम को एक अलग तरीके से प्राप्त करता है।

एल्गोरिथम के पीछे का विचार

पारंपरिक निरंतर और नियतात्मक जैव रासायनिक दर समीकरण सेलुलर प्रतिक्रियाओं की सटीक भविष्यवाणी नहीं करते हैं क्योंकि वे थोक प्रतिक्रियाओं पर भरोसा करते हैं जिनके लिए लाखों अणुओं की बातचीत की आवश्यकता होती है। वे प्रायः युग्मित साधारण अंतर समीकरणों के एक सेट के रूप में तैयार किए जाते हैं। इसके विपरीत, गिलेस्पी एल्गोरिथ्म कुछ अभिकारकों के साथ एक प्रणाली के असतत और स्टोकेस्टिक सिमुलेशन की अनुमति देता है क्योंकि हर प्रतिक्रिया स्पष्ट रूप से सिम्युलेटेड होती है। एकल गिलेस्पी सिमुलेशन से संबंधित एक प्रक्षेपवक्र संभाव्यता द्रव्यमान समारोह से एक सटीक नमूना दर्शाता है जो कि मास्टर समीकरण का समाधान है।

एल्गोरिदम का भौतिक आधार प्रतिक्रिया पोत के भीतर अणुओं की टक्कर है। यह माना जाता है कि टकराव अक्सर होते हैं, लेकिन उचित अभिविन्यास और ऊर्जा के साथ टकराव बहुत कम होते हैं। इसलिए, गिलेस्पी ढांचे के भीतर सभी प्रतिक्रियाओं में अधिकतम दो अणु सम्मिलित होने चाहिए। तीन अणुओं को सम्मिलित करने वाली प्रतिक्रियाओं को अत्यंत दुर्लभ माना जाता है और उन्हें द्विआधारी प्रतिक्रियाओं के अनुक्रम के रूप में तैयार किया जाता है। यह भी माना जाता है कि प्रतिक्रिया वातावरण अच्छी तरह मिश्रित है।

एल्गोरिथम

एक हालिया समीक्षा (गिलेस्पी, 2007) में तीन अलग-अलग, लेकिन समकक्ष योगों की रूपरेखा दी गई है; प्रत्यक्ष, प्रथम-प्रतिक्रिया, और प्रथम-पारिवारिक विधियाँ, जिससे पूर्व दो बाद के विशेष घटना हैं। प्रत्यक्ष और प्रथम-प्रतिक्रिया विधियों का सूत्रीकरण स्टोचैस्टिक रासायनिक कैनेटीक्स के तथाकथित मौलिक आधार पर सामान्य मोंटे-कार्लो व्युत्क्रम चरणों के प्रदर्शन पर केंद्रित है, जो गणितीय रूप से कार्य है

,

जहां प्रत्येक शब्द एक प्राथमिक प्रतिक्रिया के प्रवृत्ति कार्य हैं, जिसका तर्क है , प्रजातियों का वेक्टर मायने रखता है। h> पैरामीटर अगली प्रतिक्रिया (या ठहराव समय) का समय है, और वर्तमान समय है। गिलेस्पी की व्याख्या करने के लिए, इस अभिव्यक्ति को दी गई संभाव्यता के रूप में पढ़ा जाता है , कि सिस्टम की अगली प्रतिक्रिया अतिसूक्ष्म समय अंतराल में होगी , और स्टोइकोमेट्री के अनुरूप होगा वें प्रतिक्रिया। यह सूत्रीकरण लागू करके प्रत्यक्ष और प्रथम-प्रतिक्रिया विधियों के लिए एक विंडो प्रदान करता है एक घातीय रूप से वितरित यादृच्छिक चर है, और बिंदु संभावनाओं के साथ सांख्यिकीय रूप से स्वतंत्र पूर्णांक यादृच्छिक चर है .

इस प्रकार, मोंटे-कार्लो जनरेटिंग विधि केवल दो छद्म यादृच्छिक संख्याओं को आकर्षित करने के लिए है, और पर , और गणना करें

,

और

सबसे छोटा पूर्णांक संतोषजनक .

प्रवास के समय और अगली प्रतिक्रिया के लिए इस जनरेटिंग विधि का उपयोग करते हुए, गिलेस्पी द्वारा डायरेक्ट मेथड एल्गोरिथम के रूप में कहा गया है

1. समय प्रारंभ करें  और सिस्टम की स्थिति 

2. राज्य में व्यवस्था के साथ समय पर , सभी का मूल्यांकन करें और उनकी राशि 3. प्रतिस्थापित करके अगली प्रतिक्रिया को प्रभावित करें और 4. रिकॉर्ड जैसी इच्छा थी। चरण 1 पर लौटें, अन्यथा अनुकरण समाप्त करें।

एल्गोरिदम का यह परिवार कम्प्यूटेशनल रूप से महंगा है और इस प्रकार कई संशोधन और अनुकूलन मौजूद हैं, जिसमें अगली प्रतिक्रिया विधि (गिब्सन और ब्रुक), अधिवर्ष, साथ ही हाइब्रिड तकनीकें सम्मिलित हैं, जहां प्रचुर मात्रा में अभिकारकों को नियतात्मक व्यवहार के साथ तैयार किया जाता है। अनुकूलित तकनीक प्रायः एल्गोरिथ्म के पीछे के सिद्धांत की सटीकता से समझौता करती है क्योंकि यह मास्टर समीकरण से जुड़ती है, लेकिन बहुत बेहतर समय-सारिणी के लिए उचित अहसास प्रदान करती है। एल्गोरिदम के सटीक संस्करणों की कम्प्यूटेशनल लागत प्रतिक्रिया नेटवर्क के युग्मन वर्ग द्वारा निर्धारित की जाती है। कमजोर युग्मित नेटवर्क में, किसी अन्य प्रतिक्रिया से प्रभावित होने वाली प्रतिक्रियाओं की संख्या एक छोटे स्थिरांक से बंधी होती है। दृढ़ता से युग्मित नेटवर्क में, एक एकल प्रतिक्रिया फायरिंग सिद्धांत रूप में अन्य सभी प्रतिक्रियाओं को प्रभावित कर सकती है। कमजोर युग्मित नेटवर्क के लिए निरंतर-समय स्केलिंग के साथ एल्गोरिथ्म का एक सटीक संस्करण विकसित किया गया है, जो बहुत बड़ी संख्या में प्रतिक्रिया चैनलों के साथ सिस्टम के कुशल सिमुलेशन को सक्षम करता है (स्लीपॉय थॉम्पसन प्लैम्पटन 2008)। ब्रैटसन एट अल द्वारा सामान्यीकृत गिलेस्पी एल्गोरिद्म जो यादृच्छिक जैव रासायनिक घटनाओं के गैर-मार्कोवियन गुणों के लिए जिम्मेदार है, विकसित किया गया है। 2005 और स्वतंत्र रूप से बैरियो एट अल। 2006, साथ ही (कै 2007)। विवरण के लिए नीचे उद्धृत लेख देखें।

आंशिक-प्रवृत्ति सूत्रीकरण, जैसा कि रामास्वामी एट अल दोनों द्वारा स्वतंत्र रूप से विकसित किया गया है। (2009, 2010) और इंदुर्ख्य और बील (2010), एल्गोरिथम के सटीक संस्करणों के एक परिवार के निर्माण के लिए उपलब्ध हैं, जिनकी कम्प्यूटेशनल लागत प्रतिक्रियाओं की (बड़ी) संख्या के बजाय नेटवर्क में रासायनिक प्रजातियों की संख्या के अनुपात में है। ये योग कम्प्यूटेशनल लागत को कम कर सकते हैं कमजोर युग्मित नेटवर्क के लिए निरंतर-समय स्केलिंग और दृढ़ता से युग्मित नेटवर्क के लिए प्रजातियों की संख्या के साथ सबसे अधिक रैखिक रूप से स्केल करने के लिए। देरी के साथ प्रतिक्रियाओं के लिए सामान्यीकृत गिलेस्पी एल्गोरिथम का एक आंशिक-प्रवृत्ति संस्करण भी प्रस्तावित किया गया है (रामास्वामी सबलजारिनी 2011)। आंशिक-प्रवृत्ति विधियों का उपयोग प्राथमिक रासायनिक प्रतिक्रियाओं तक सीमित है, अर्थात, अधिकतम दो अलग-अलग अभिकारकों के साथ प्रतिक्रियाएँ। नेटवर्क आकार में एक रेखीय (प्रतिक्रिया के क्रम में) वृद्धि की कीमत पर, प्रत्येक गैर-प्राथमिक रासायनिक प्रतिक्रिया को समान रूप से प्राथमिक के एक सेट में विघटित किया जा सकता है।

उदाहरण

एबी डिमर्स बनाने के लिए ए और बी की रिवर्सिबल बाइंडिंग

एक सरल उदाहरण यह समझाने में मदद कर सकता है कि गिलेस्पी एल्गोरिथम कैसे काम करता है। दो प्रकार के अणुओं की एक प्रणाली पर विचार करें, और बी. इस प्रणाली में, और बी बनाने के लिए एक साथ उल्टा बांधें एबी मंदक ऐसे होते हैं कि दो प्रतिक्रियाएँ संभव हैं: या तो ए और B एक बनाने के लिए उत्क्रमणीय रूप से प्रतिक्रिया करते हैं एबी डिमर, या ए एबी डिमर में वियोजित हो जाता है और बी. किसी दिए गए एकल के साथ प्रतिक्रिया करने वाले किसी एकल ए अणु के लिए प्रतिक्रिया दर स्थिर बी अणु है , और एक के लिए प्रतिक्रिया दर एबी डिमर ब्रेकिंग है .

यदि समय t पर प्रत्येक प्रकार का एक अणु होता है तो मंदक बनने की दर होती है , जबकि अगर हैं प्रकार के अणु और प्रकार के अणु बी, मंदक गठन की दर है . अगर वहाँ डिमर्स तो डिमर हदबंदी की दर है .

कुल प्रतिक्रिया दर, , समय पर t तब द्वारा दिया जाता है

तो, अब हमने दो प्रतिक्रियाओं के साथ एक साधारण मॉडल का वर्णन किया है। यह परिभाषा गिलेस्पी एल्गोरिथम से स्वतंत्र है। अब हम वर्णन करेंगे कि गिलेस्पी एल्गोरिथम को इस प्रणाली में कैसे लागू किया जाए।

एल्गोरिथम में, हम समय में दो चरणों में आगे बढ़ते हैं: अगली प्रतिक्रिया के लिए समय की गणना करना, और यह निर्धारित करना कि अगली प्रतिक्रिया कौन सी संभावित प्रतिक्रिया है। प्रतिक्रियाओं को पूरी तरह से यादृच्छिक माना जाता है, इसलिए यदि प्रतिक्रिया की दर एक समय टी है , तब समय, δt, जब तक अगली प्रतिक्रिया नहीं होती है, माध्य के साथ घातीय वितरण फ़ंक्शन से ली गई एक यादृच्छिक संख्या है . इस प्रकार, हम समय को t से t + δt तक आगे बढ़ाते हैं।

संख्या का प्लॉट A अणु (काला वक्र) और AB समय के कार्य के रूप में मंदक। जैसा कि हमने 10 से आरम्भ किया था A और B अणु समय पर t=0, की संख्या B अणुओं की संख्या हमेशा बराबर होती है A अणु और इसलिए यह नहीं दिखाया गया है।

संभावना है कि यह प्रतिक्रिया एक है अणु एक के लिए बाध्यकारी बी अणु इस प्रकार की प्रतिक्रिया के कारण कुल दर का अंश है, अर्थात,

संभावना है कि प्रतिक्रिया है

संभावना है कि अगली प्रतिक्रिया एक है एबी मंदक वियोजन केवल 1 घटा है। तो इन दो संभावनाओं के साथ हम या तो घटाकर एक मंदक बनाते हैं और एक से, और बढ़ाएँ एक के द्वारा, या हम एक डिमर को अलग कर देते हैं और वृद्धि करते हैं और एक से और घटाएं एक - एक करके।

अब हमारे पास t + δt के लिए उन्नत समय है, और एक ही प्रतिक्रिया का प्रदर्शन किया है। गिलेस्पी एल्गोरिथम इन दो चरणों को उतनी ही बार दोहराता है जितनी बार हम चाहते हैं (यानी, जितनी प्रतिक्रियाओं के लिए) सिस्टम को अनुकरण करने के लिए आवश्यक है। एक गिलेस्पी अनुकरण का परिणाम जिसके साथ आरम्भ होता है और टी = 0 पर, और कहाँ और , दाईं ओर दिखाया गया है। इन पैरामीटर मानों के लिए औसतन 8 हैं डिमर्स और 2 और B लेकिन अणुओं की छोटी संख्या के कारण इन मूल्यों के आसपास उतार-चढ़ाव बड़े होते हैं। गिलेस्पी एल्गोरिथ्म का उपयोग अक्सर उन प्रणालियों का अध्ययन करने के लिए किया जाता है जहां ये उतार-चढ़ाव महत्वपूर्ण होते हैं।

यह सिर्फ एक साधारण उदाहरण था, दो प्रतिक्रियाओं के साथ। अधिक प्रतिक्रियाओं वाली अधिक जटिल प्रणालियों को उसी तरह से नियंत्रित किया जाता है। सभी प्रतिक्रिया दरों की गणना प्रत्येक समय कदम पर की जानी चाहिए, और दर में इसके आंशिक योगदान के बराबर संभाव्यता के साथ चुना जाना चाहिए। समय तो इस उदाहरण के रूप में उन्नत है।

स्टोकेस्टिक सेल्फ-असेंबली

गार्ड मॉडल समुच्चय में लिपिड के स्व-विधानसभा का वर्णन करता है। स्टोचैस्टिक सिमुलेशन का उपयोग करके यह कई प्रकार के समुच्चय और उनके विकास के उद्भव को दर्शाता है।

संदर्भ

  1. Gillespie, Daniel T. (2007-05-01). "रासायनिक काइनेटिक्स का स्टोचैस्टिक सिमुलेशन". Annual Review of Physical Chemistry (in English). 58 (1): 35–55. doi:10.1146/annurev.physchem.58.032806.104637. ISSN 0066-426X.

अग्रिम पठन