निर्देशांक सदिश: Difference between revisions

From Vigyanwiki
m (4 revisions imported from alpha:समन्वय_वेक्टर)
No edit summary
Line 81: Line 81:
==संदर्भ==
==संदर्भ==
{{reflist}}
{{reflist}}
[[Category: लीनियर अलजेब्रा]] [[Category: वैक्टर (गणित और भौतिकी)]]


 
[[Category:All articles needing additional references]]
 
[[Category:Articles needing additional references from February 2009]]
[[Category: Machine Translated Page]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Created On 08/02/2023]]
[[Category:Created On 08/02/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:लीनियर अलजेब्रा]]
[[Category:वैक्टर (गणित और भौतिकी)]]

Revision as of 14:06, 15 June 2023

रेखीय बीजगणित में निर्देशांक सदिश एक ऐसे सदिश (गणित और भौतिकी) का प्रतिनिधित्व करता है जो संख्याओं की क्रमबद्ध सूची (टपल) के रूप में होता है और जो विशेष अनुक्रमित आधार के संदर्भ में सदिश का वर्णन करता है।[1] सामान्यतः 3-आयामी कार्तीय समन्वय प्रणाली में (5, 2, 1) जैसी स्थितियां हो सकती है। जिसका आधार इस प्रणाली के अक्ष के रूप में होता है। निर्देशांक सदैव अनुक्रमित आधार के सापेक्ष निर्दिष्ट होते हैं। आधार और उनके संबंधित समन्वय प्रतिनिधित्व के सदिश रिक्त समष्टि और रैखिक रूपांतरण मे मुख्य रूप से स्तंभ सदिश, पंक्ति सदिश और आव्यूह के रूप में सम्मिलित होते हैं। इसलिए वे गणना में उपयोगी होते हैं।

निर्देशांक सदिश को अनंत-आयामी सदिश या रिक्त समष्टि के लिए भी प्रयुक्त किया जा सकता है। जैसा कि नीचे संबोधित किया गया है।

परिभाषा

मान लीजिए कि V क्षेत्र F पर आयाम n का सदिश समष्टि है।

माना कि , के लिए एक अनुक्रमित आधार है और प्रत्येक के लिए आधार सदिश का एक अद्वितीय रैखिक संयोजन होता है जो के बराबर होता है:

B के सापेक्ष का निर्देशांक सदिश निर्देशांकों का अनुक्रम है:

इसे B के संबंध में का प्रतिनिधित्व या का B प्रतिनिधित्व भी कहा जाता है और , के निर्देशांक कहलाते हैं। आधार का क्रम यहां महत्वपूर्ण हो जाता है क्योंकि यह उस क्रम को निर्धारित करता है जिसमें निर्देशांक सदिश के गुणांक सूचीबद्ध होते हैं।

परिमित-आयामी सदिश या रिक्त समष्टि के निर्देशांक सदिश को आव्यूह द्वारा स्तंभ या पंक्ति सदिश के रूप में दर्शाया जा सकता है। उपरोक्त गणना को निम्न रूप मे लिख सकते है:

और

जहां आव्यूह का परिवर्त आव्यूह है:

मानक प्रतिनिधित्व

एक फलन को परिभाषित करके उपरोक्त परिवर्तन को सामान्यीकृत कर सकते हैं। जिसे B के संबंध में V का मानक प्रतिनिधित्व कहा जाता है जो प्रत्येक सदिश को उसके निर्देशांक प्रतिनिधित्व पर प्रयुक्त होता है।

तब V से Fn तक एक रैखिक रूपांतरण है। वास्तव में यह एक समरूपता है, जिसका व्युत्क्रम है:

वैकल्पिक रूप से हम को उपरोक्त फलन के रूप में परिभाषित कर सकते है जो सिद्ध है कि एक समरूपता है और को इसके व्युत्क्रम के रूप मे परिभाषित किया है।

उदाहरण

उदाहरण 1

माना कि P3 अधिक से अधिक 3 डिग्री वाले सभी बीजगणितीय बहुपदों का समष्टि है अर्थात x का उच्चतम घातांक 3 हो सकता है। यह समष्टि रेखीय है और निम्न बहुपदों द्वारा विस्तृत है:

तब बहुपद के संगत निर्देशांक सदिश है:

उस प्रतिनिधित्व के अनुसार अवकल फलन जिसे हम D द्वारा चिन्हित करते है। जिसको निम्नलिखित आव्यूह द्वारा प्रदर्शित किया जाता है:

इस प्रणाली का उपयोग करके संक्रियक के गुणों जैसे कि व्युत्क्रम, हर्मिटी समष्टि या एंटी-हर्मिटी समष्टि, विस्तृत श्रेणी और आइगेन मान का पता लगाना अत्यधिक सामान्य होता है।

उदाहरण 2

पाउली आव्यूह जो घूर्णन (भौतिकी) मे निर्देशांक सदिशों को परिवर्तित करते समय घूर्णन संक्रियक का प्रतिनिधित्व करते हैं।

आधार परिवर्तन आव्यूह

मान लीजिए कि B और C सदिश समष्टि के दो भिन्न आधार हैं और हम इसके साथ को चिन्हित करते है। तब आव्यूह जिसमें आधार सदिश b1, b2, …, bn के C प्रतिनिधित्व वाले स्तम्भ सदिश हैं:

इस आव्यूह को B से C तक आधार परिवर्तन आव्यूह के रूप में जाना जाता है। इसे पर स्वसमाकृतिकता के रूप में माना जा सकता है। B में दर्शाए गए किसी भी सदिश को C में एक प्रतिनिधित्व में परिवर्तित किया जा सकता है:

आधार परिवर्तन के अंतर्गत ध्यान दें कि परिवर्तन आव्यूह M पर मूलांक और निर्देशांक सदिश के मूलांक समान हैं। इससे यह प्रतीत होता है कि शेष मूलांक को छोड़कर इसे नष्ट कर दिया गया है। हालांकि यह प्रणाली एक सहायता के रूप में कार्य कर सकती है। इसमे यह ध्यान रखना महत्वपूर्ण होता है कि ऐसा कोई निरस्तीकरण या समान गणितीय फलन नहीं हो सकता है।

परिणाम

आव्यूह M एक व्युत्क्रमणीय आव्यूह है और M−1, C से B तक का आधार रूपांतरण आव्यूह है।

दूसरे शब्दों में,

अनंत-आयामी सदिश समष्टि

माना कि क्षेत्र F पर अनंत-आयामी सदिश समष्टि है। यदि आयाम κ है, तो के लिए κ तत्वों का आधार है। एक अनुक्रम चुने जाने के बाद आधार को अनुक्रमित आधार माना जा सकता है। के तत्व आधार में तत्वों के परिमित रैखिक संयोजन हैं, जो पहले बताए गए सदिश समष्टि के अनुसार अद्वितीय समन्वय प्रणाली को उत्पन्न करते हैं। एकमात्र रूपांतरण यह है कि निर्देशांक के लिए प्रयुक्त किया गया अनुक्रम परिमित नहीं है। चूंकि दिया गया सदिश आधार तत्वों का परिमित रैखिक संयोजन है, के लिए निर्देशांक सदिश की केवल गैर-शून्य प्रविष्टियाँ का प्रतिनिधित्व करने वाले रैखिक संयोजन के गैर-शून्य गुणांक होते है। इस प्रकार के लिए केवल कई प्रविष्टियों को छोड़कर सभी निर्देशांक सदिश शून्य होते है।

संभवतः अनंत-आयामी सदिश या रिक्त समष्टि के बीच रैखिक परिवर्तनों को अनंत आव्यूह के साथ परिमित आयामी स्थिति के अनुरूप बनाया जा सकता है। से में परिवर्तित विशेष फलनों को पूर्ण रैखिक आलेख में वर्णित किया जा सकता है।

यह भी देखें

संदर्भ

  1. Howard Anton; Chris Rorres (12 April 2010). Elementary Linear Algebra: Applications Version. John Wiley & Sons. ISBN 978-0-470-43205-1.