सांख्यिकीय पैरामीट्रिक मानचित्रण: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Other uses|SPM (disambiguation){{!}}SPM}}[[सांख्यिकीय]] पैरामीट्रिक मानचित्रण (SPM) [[कार्यात्मक न्यूरोइमेजिंग]] प्रयोगों के समय लिखी गई मस्तिष्क गतिविधि में अंतर की जांच के लिए एक सांख्यिकीय तकनीक है। इसे [[कार्ल फ्रिस्टन]] ने बनाया था। यह वैकल्पिक रूप से इस तरह के विश्लेषण करने के लिए [[यूनिवर्सिटी कॉलेज लंदन]] में वेलकम डिपार्टमेंट ऑफ़ इमेजिंग न्यूरोसाइंस द्वारा बनाए गए सॉफ़्टवेयर का उल्लेख कर | {{Other uses|SPM (disambiguation){{!}}SPM}}[[सांख्यिकीय]] पैरामीट्रिक मानचित्रण (SPM) [[कार्यात्मक न्यूरोइमेजिंग]] प्रयोगों के समय लिखी गई मस्तिष्क गतिविधि में अंतर की जांच के लिए एक सांख्यिकीय तकनीक है। इसे [[कार्ल फ्रिस्टन]] ने बनाया था। यह वैकल्पिक रूप से इस तरह के विश्लेषण करने के लिए [[यूनिवर्सिटी कॉलेज लंदन]] में वेलकम डिपार्टमेंट ऑफ़ इमेजिंग न्यूरोसाइंस द्वारा बनाए गए सॉफ़्टवेयर का उल्लेख कर सकते है। | ||
== दृष्टिकोण == | == दृष्टिकोण == | ||
===माप की इकाई=== | ===माप की इकाई=== | ||
कार्यात्मक न्यूरोइमेजिंग एक प्रकार का 'ब्रेन स्कैनिंग' है। इसमें मस्तिष्क गतिविधि | कार्यात्मक न्यूरोइमेजिंग एक प्रकार का 'ब्रेन स्कैनिंग' है। इसमें मस्तिष्क गतिविधि माप सम्मलित है। माप तकनीक प्रतिबिंबन तकनीक (जैसे, [[fMRI|FMRI]] और [[Index.php?title=PET|PET]]) पर निर्भर करती है। स्कैनर उस क्षेत्र का 'मानचित्र' बनाता है जिसे वोक्सल्स के रूप में दर्शाया जाता है। प्रत्येक स्वर त्रि-आयामी अंतरिक्ष में एक विशिष्ट मात्रा की गतिविधि का प्रतिनिधित्व करता है। [[Index.php?title=वोक्सेल|वोक्सेल]] का सटीक आकार तकनीक के आधार पर भिन्न होता है। FMRI स्वर सामान्यतः एक समबाहु घनाभ में 27 मिमी 3 की मात्रा का प्रतिनिधित्व करते हैं। | ||
=== प्रायोगिक डिजाइन === | === प्रायोगिक डिजाइन === |
Revision as of 19:04, 27 May 2023
सांख्यिकीय पैरामीट्रिक मानचित्रण (SPM) कार्यात्मक न्यूरोइमेजिंग प्रयोगों के समय लिखी गई मस्तिष्क गतिविधि में अंतर की जांच के लिए एक सांख्यिकीय तकनीक है। इसे कार्ल फ्रिस्टन ने बनाया था। यह वैकल्पिक रूप से इस तरह के विश्लेषण करने के लिए यूनिवर्सिटी कॉलेज लंदन में वेलकम डिपार्टमेंट ऑफ़ इमेजिंग न्यूरोसाइंस द्वारा बनाए गए सॉफ़्टवेयर का उल्लेख कर सकते है।
दृष्टिकोण
माप की इकाई
कार्यात्मक न्यूरोइमेजिंग एक प्रकार का 'ब्रेन स्कैनिंग' है। इसमें मस्तिष्क गतिविधि माप सम्मलित है। माप तकनीक प्रतिबिंबन तकनीक (जैसे, FMRI और PET) पर निर्भर करती है। स्कैनर उस क्षेत्र का 'मानचित्र' बनाता है जिसे वोक्सल्स के रूप में दर्शाया जाता है। प्रत्येक स्वर त्रि-आयामी अंतरिक्ष में एक विशिष्ट मात्रा की गतिविधि का प्रतिनिधित्व करता है। वोक्सेल का सटीक आकार तकनीक के आधार पर भिन्न होता है। FMRI स्वर सामान्यतः एक समबाहु घनाभ में 27 मिमी 3 की मात्रा का प्रतिनिधित्व करते हैं।
प्रायोगिक डिजाइन
शोधकर्ता एक विशिष्ट मानसिक प्रक्रिया या प्रक्रियाओं से जुड़ी मस्तिष्क गतिविधि की जांच करते हैं। एक दृष्टिकोण में यह पूछना शामिल है कि 'कार्य B की तुलना में कार्य A करते समय मस्तिष्क के कौन से क्षेत्र उल्लेखनीय रूप से अधिक सक्रिय हैं?'। यद्यपि कार्यों को समान होने के लिए डिज़ाइन किया जा सकता है, जांच के तहत व्यवहार को छोड़कर, मस्तिष्क अभी भी कार्य के अंतर के अलावा अन्य कारकों के कारण कार्यों के बीच गतिविधि में बदलाव दिखा सकता है (क्योंकि मस्तिष्क कार्य से असंबंधित कई समानांतर कार्यों का समन्वय करता है)। इसके अलावा, सिग्नल में इमेजिंग प्रक्रिया से ही शोर हो सकता है।
इन यादृच्छिक प्रभावों को फ़िल्टर करने के लिए, और विशेष रूप से जांच की जा रही प्रक्रिया से जुड़े गतिविधि के क्षेत्रों को उजागर करने के लिए, आँकड़े सबसे महत्वपूर्ण अंतरों की तलाश करते हैं। इसमें डेटा तैयार करने और सामान्य रैखिक मॉडल का उपयोग करके इसका विश्लेषण करने के लिए एक बहु-चरणीय प्रक्रिया शामिल है।
इमेज प्री-प्रोसेसिंग
शोर को दूर करने या नमूनाकरण त्रुटियों के लिए सही करने के लिए स्कैनर से छवियों को पूर्व-संसाधित किया जा सकता है।
एक अध्ययन आमतौर पर एक विषय को कई बार स्कैन करता है। स्कैन के बीच सिर की गति को ध्यान में रखते हुए, छवियों को आमतौर पर समायोजित किया जाता है ताकि प्रत्येक छवि में स्वर मस्तिष्क में एक ही साइट के अनुरूप (लगभग) हों। इसे पुनर्संरेखण या गति सुधार के रूप में संदर्भित किया जाता है, छवि पुनर्संरेखण देखें।
कार्यात्मक न्यूरोइमेजिंग अध्ययन में आमतौर पर कई प्रतिभागियों को शामिल किया जाता है, जिनमें से प्रत्येक का दिमाग अलग-अलग आकार का होता है। सभी में समान स्थूल शरीर रचना होने की संभावना है, समग्र मस्तिष्क के आकार में मामूली अंतर को बचाते हुए, ग्यारी की स्थलाकृति में व्यक्तिगत भिन्नता और सेरेब्रल कॉर्टेक्स के सल्कस (न्यूरोएनाटॉमी), और कठोर शरीर जैसी गहरी संरचनाओं में रूपात्मक अंतर। तुलना में सहायता के लिए, प्रत्येक मस्तिष्क की 3डी छवि को रूपांतरित किया जाता है ताकि स्थानिक सामान्यीकरण के माध्यम से सतही संरचनाएं पंक्तिबद्ध हो जाएं। इस तरह के सामान्यीकरण में आमतौर पर एक मानक टेम्पलेट से मिलान करने के लिए अनुवाद, रोटेशन और स्केलिंग और मस्तिष्क की सतह के गैर-रैखिक ताना-बाना शामिल होता है। तलैराच निर्देशांक जैसे मानक मस्तिष्क मानचित्र | मॉन्ट्रियल न्यूरोलॉजिकल इंस्टीट्यूट (एमएनआई) के तलैराच-टूरनौक्स या टेम्प्लेट दुनिया भर के शोधकर्ताओं को उनके परिणामों की तुलना करने की अनुमति देते हैं।
डेटा को कम शोर (कुछ छवि-संपादन सॉफ़्टवेयर में उपयोग किए जाने वाले 'कलंक' प्रभाव के समान) बनाने के लिए छवियों को चिकना किया जा सकता है, जिसके द्वारा स्वरों को उनके पड़ोसियों के साथ औसत किया जाता है, आमतौर पर गाऊसी फ़िल्टर या तरंग परिवर्तन द्वारा।
सांख्यिकीय तुलना
अवशिष्ट परिवर्तनशीलता के साथ प्रयोगात्मक और भ्रमित प्रभावों के संदर्भ में डेटा परिवर्तनशीलता का वर्णन करने के लिए सामान्य रैखिक मॉडल का उपयोग करते हुए, प्रत्येक स्वर में पैरामीट्रिक सांख्यिकी मॉडल ग्रहण किए जाते हैं। मॉडल मापदंडों के संदर्भ में व्यक्त परिकल्पनाओं का मूल्यांकन प्रत्येक स्वर में यूनीवेरिएट (सांख्यिकी) के साथ किया जाता है।
विश्लेषण, तंत्रिका गतिविधि में अंतर्निहित परिवर्तनों के कारण मापा संकेत कैसे होता है, इसके रैखिक कनवल्शन मॉडल का उपयोग करके समय श्रृंखला (यानी एक निश्चित क्षेत्र में एक कार्य चर और मस्तिष्क गतिविधि के बीच संबंध) के अंतर की जांच कर सकते हैं।
क्योंकि कई सांख्यिकीय परीक्षण किए जाते हैं, टाइप I त्रुटियों (झूठे सकारात्मक) को नियंत्रित करने के लिए समायोजन करना पड़ता है, जो संभावित रूप से कई स्वरों पर गतिविधि के स्तरों की तुलना के कारण होता है। एक प्रकार I त्रुटि के परिणामस्वरूप कार्य से संबंधित पृष्ठभूमि मस्तिष्क गतिविधि का गलत मूल्यांकन होगा। सांख्यिकीय महत्व के लिए एक नया मानदंड निर्धारित करने के लिए छवि में resel ्स की संख्या और निरंतर यादृच्छिक क्षेत्रों के सिद्धांत के आधार पर समायोजन किया जाता है जो कई तुलनाओं की समस्या के लिए समायोजित होता है।
चित्रमय निरूपण
मापी गई मस्तिष्क गतिविधि में अंतर को विभिन्न तरीकों से दर्शाया जा सकता है।
उन्हें एक तालिका के रूप में प्रस्तुत किया जा सकता है, जो निर्देशांक प्रदर्शित करता है जो कार्यों के बीच गतिविधि में सबसे महत्वपूर्ण अंतर दिखाता है। वैकल्पिक रूप से, मस्तिष्क की गतिविधि में अंतर को मस्तिष्क 'स्लाइस' पर रंग के पैच के रूप में दिखाया जा सकता है, जिसमें रंग स्थितियों के बीच सांख्यिकीय रूप से महत्वपूर्ण अंतर के साथ स्वरों के स्थान का प्रतिनिधित्व करते हैं। रंग प्रवणता को सांख्यिकीय मानों, जैसे कि t-मान या z-स्कोर, से प्रतिचित्रित किया जाता है। यह किसी दिए गए क्षेत्र की सापेक्ष सांख्यिकीय ताकत का सहज और दृष्टिगत रूप से आकर्षक नक्शा बनाता है।
गतिविधि में अंतर को 'ग्लास ब्रेन' के रूप में दर्शाया जा सकता है, मस्तिष्क के तीन रूपरेखा विचारों का प्रतिनिधित्व जैसे कि यह पारदर्शी हो। छायांकन के क्षेत्रों के रूप में केवल सक्रियण के पैच दिखाई दे रहे हैं। यह किसी दिए गए सांख्यिकीय तुलना में महत्वपूर्ण परिवर्तन के कुल क्षेत्र को सारांशित करने के साधन के रूप में उपयोगी है।
सॉफ्टवेयर
एसपीएम कार्यात्मक न्यूरोइमेजिंग डेटा के विश्लेषण में सहायता के लिए यूनिवर्सिटी कॉलेज लंदन में वेलकम डिपार्टमेंट ऑफ इमेजिंग न्यूरोसाइंस द्वारा लिखा गया सॉफ्टवेयर है। यह MATLAB का उपयोग करके लिखा गया है और मुफ्त सॉफ्टवेयर के रूप में वितरित किया गया है।[1]
यह भी देखें
- संज्ञानात्मक तंत्रिका विज्ञान
- कार्यात्मक एकीकरण (न्यूरोबायोलॉजी)
- फंक्शनल मैग्नेटिक रेजोनेंस इमेजिंग
- कार्यात्मक न्यूरोइमेजिंग
- सामान्य रैखिक मॉडल
- गतिशील कारण मॉडलिंग
- न्यूरोइमेजिंग
- कार्यात्मक न्यूरोइमेज का विश्लेषण
- फ्रीसर्फर
- FMRIB सॉफ्टवेयर लाइब्रेरी
संदर्भ
- ↑ "एसपीएम - सांख्यिकीय पैरामीट्रिक मैपिंग". www.fil.ion.ucl.ac.uk. Retrieved 2019-10-03.
बाहरी संबंध
- Wikibooks SPM Wikibook.
- fMRI guide by Chris Rorden
- Introduction to fMRI: experimental design and data analysis
- Cambridge Imagers - Neuroimaging information and tutorials.
- Buttons in SPM5 PowerPoint presentation from the SPM for dummies course
- ISAS (Ictal-Interictal SPECT Analysis by SPM) - Yale University
- AutoSPM: Automated SPM for Surgical Planning