गैस स्थिरांक: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Physical constant equivalent to the Boltzmann constant, but in different units}} | {{short description|Physical constant equivalent to the Boltzmann constant, but in different units}} | ||
{| class="wikitable" style="margin: 0 0 0 0.5em; float: right;" | {| class="wikitable" style="margin: 0 0 0 0.5em; float: right;" | ||
! | ! आर. का मान{{physconst|R|ref=only}} | ||
! | ! इकाई | ||
|- | |- | ||
| colspan="2" |'''[[International System of Units| | | colspan="2" |'''[[International System of Units|एसआई इकाइयां]]''' | ||
|- | |- | ||
| {{val|8.31446261815324}} | | {{val|8.31446261815324}} | ||
Line 15: | Line 15: | ||
| [[Kilogram|kg]]⋅[[Metre|m]]<sup>2</sup>⋅[[second|s]]<sup>−2</sup>⋅[[kelvin|K]]<sup>−1</sup>⋅[[mole (unit)|mol]]<sup>−1</sup> | | [[Kilogram|kg]]⋅[[Metre|m]]<sup>2</sup>⋅[[second|s]]<sup>−2</sup>⋅[[kelvin|K]]<sup>−1</sup>⋅[[mole (unit)|mol]]<sup>−1</sup> | ||
|- | |- | ||
| colspan="2" |''' | | colspan="2" |'''अन्य सामान्य इकाइयां''' | ||
|- | |- | ||
| {{val|8314.46261815324}} | | {{val|8314.46261815324}} | ||
Line 57: | Line 57: | ||
|- | |- | ||
|} | |} | ||
मोलर गैस स्थिरांक (गैस स्थिरांक, सार्वभौमिक गैस स्थिरांक या आदर्श गैस स्थिरांक के रूप में भी जाना जाता है) को प्रतीक {{math|''R''}} या {{math|{{overline|''R''}}}} द्वारा निरूपित किया जाता है | यह बोल्ट्ज़मैन स्थिरांक के समतुल्य मोलर है | जो पदार्थ की प्रति मात्रा प्रति [[तापमान]] [[ऊर्जा]] की इकाइयों में व्यक्त किया जाता है, अर्थात दबाव-मात्रा उत्पाद, प्रति कण प्रति तापमान वृद्धि ऊर्जा के अतिरिक्त स्थिरांक भी बॉयल के नियम, चार्ल्स के नियम, अवोगाद्रो के नियम और गे-लुसाक के नियम के स्थिरांक का एक संयोजन है। यह एक [[भौतिक स्थिरांक]] है जो भौतिक विज्ञानों में कई मूलभूत समीकरणों में चित्रित किया गया है | मोलर गैस स्थिरांक (गैस स्थिरांक, सार्वभौमिक गैस स्थिरांक या आदर्श गैस स्थिरांक के रूप में भी जाना जाता है) को प्रतीक {{math|''R''}} या {{math|{{overline|''R''}}}} द्वारा निरूपित किया जाता है | यह बोल्ट्ज़मैन स्थिरांक के समतुल्य मोलर है | जो पदार्थ की प्रति मात्रा प्रति [[तापमान]] [[ऊर्जा]] की इकाइयों में व्यक्त किया जाता है, अर्थात दबाव-मात्रा उत्पाद, प्रति कण प्रति तापमान वृद्धि ऊर्जा के अतिरिक्त स्थिरांक भी बॉयल के नियम, चार्ल्स के नियम, अवोगाद्रो के नियम और गे-लुसाक के नियम के स्थिरांक का एक संयोजन है। यह एक [[भौतिक स्थिरांक]] है | जो भौतिक विज्ञानों में कई मूलभूत समीकरणों में चित्रित किया गया है | जैसे कि [[आदर्श गैस कानून|आदर्श गैस नियम]], [[अरहेनियस समीकरण]] और [[नर्नस्ट समीकरण]] है। | ||
गैस स्थिरांक [[आनुपातिकता का स्थिरांक]] है जो भौतिकी में ऊर्जा मापदंड को तापमान मापदंड और [[पदार्थ की मात्रा]] के लिए उपयोग किए जाने वाले मापदंड से संबंधित करता है। इस प्रकार, गैस स्थिरांक का मान अंततः ऊर्जा, तापमान और पदार्थ की मात्रा की इकाइयों की स्थापना में ऐतिहासिक निर्णयों और दुर्घटनाओं से प्राप्त होता है। बोल्ट्ज़मैन स्थिरांक और [[अवोगाद्रो स्थिरांक]] समान रूप से निर्धारित किए गए थे | जो अलग-अलग ऊर्जा को तापमान और कणों की संख्या को पदार्थ की मात्रा से संबंधित करते हैं। | गैस स्थिरांक [[आनुपातिकता का स्थिरांक]] है | जो भौतिकी में ऊर्जा मापदंड को तापमान मापदंड और [[पदार्थ की मात्रा]] के लिए उपयोग किए जाने वाले मापदंड से संबंधित करता है। इस प्रकार, गैस स्थिरांक का मान अंततः ऊर्जा, तापमान और पदार्थ की मात्रा की इकाइयों की स्थापना में ऐतिहासिक निर्णयों और दुर्घटनाओं से प्राप्त होता है। बोल्ट्ज़मैन स्थिरांक और [[अवोगाद्रो स्थिरांक]] समान रूप से निर्धारित किए गए थे | जो अलग-अलग ऊर्जा को तापमान और कणों की संख्या को पदार्थ की मात्रा से संबंधित करते हैं। | ||
गैस स्थिरांक R को अवोगाद्रो स्थिरांक N<sub>A</sub> के रूप में परिभाषित किया गया है बोल्ट्ज़मैन स्थिरांक k(या k<sub>B</sub>) से गुणा किया जाता है | | गैस स्थिरांक R को अवोगाद्रो स्थिरांक N<sub>A</sub> के रूप में परिभाषित किया गया है बोल्ट्ज़मैन स्थिरांक k(या k<sub>B</sub>) से गुणा किया जाता है | | ||
Line 162: | Line 162: | ||
== विशिष्ट गैस स्थिरांक == | == विशिष्ट गैस स्थिरांक == | ||
{| class="wikitable" style="float: right;" | {| class="wikitable" style="float: right;" | ||
! ''R''<sub>specific</sub><br /> | ! ''R''<sub>specific</sub><br />शुष्क हवा के लिए | ||
! | ! इकाई | ||
|- | |- | ||
| 287.052874 | | 287.052874 | ||
Line 174: | Line 174: | ||
| ft⋅[[Pound-force|lbf]]⋅[[slug (unit)|slug]]<sup>−1</sup>⋅°R<sup>−1</sup> | | ft⋅[[Pound-force|lbf]]⋅[[slug (unit)|slug]]<sup>−1</sup>⋅°R<sup>−1</sup> | ||
|- | |- | ||
| colspan=2 | {{small| | | colspan=2 | {{small|माध्य मोलर द्रव्यमान पर आधारित<br />शुष्क हवा के लिए 28.964917 g/mol.}} | ||
|- | |- | ||
|} | |} | ||
Line 195: | Line 195: | ||
:R<sup>∗</sup> = {{val|8.369432|e=3|u=N⋅m⋅kmol<sup>−1</sup>⋅K<sup>−1</sup>}} = {{val|8.31432||u=J⋅K<sup>−1</sup>⋅mol<sup>−1</sup>}}. | :R<sup>∗</sup> = {{val|8.369432|e=3|u=N⋅m⋅kmol<sup>−1</sup>⋅K<sup>−1</sup>}} = {{val|8.31432||u=J⋅K<sup>−1</sup>⋅mol<sup>−1</sup>}}. | ||
स्थिरांक में 1000 के परिणामी कारक के साथ किलोमोल के उपयोग पर ध्यान दें। यूएसएसए1976 स्वीकार करता है कि यह मान अवोगाद्रो स्थिरांक और बोल्ट्जमान स्थिरांक के लिए उद्धृत मानों के अनुरूप नहीं है।<ref name="USSA1976"/> यह असमानता स्पष्टता से महत्वपूर्ण विचलन नहीं है और यूएसएसए1976 मानक वातावरण की सभी गणनाओं के लिए R∗ के इस मान का उपयोग करता है। R के आईएसओ मान का उपयोग करते समय परिकलित दबाव 11 किलोमीटर पर केवल 0.62 [[पास्कल (यूनिट)]] (केवल 17.4 सेंटीमीटर या 6.8 इंच के अंतर के बराबर) और 20 किमी पर 0.292 Pa (केवल 33.8 सेमी या 13.2 के अंतर के बराबर) बढ़ जाता है। में) है। | स्थिरांक में 1000 के परिणामी कारक के साथ किलोमोल के उपयोग पर ध्यान दें। यूएसएसए1976 स्वीकार करता है कि यह मान अवोगाद्रो स्थिरांक और बोल्ट्जमान स्थिरांक के लिए उद्धृत मानों के अनुरूप नहीं है।<ref name="USSA1976"/> यह असमानता स्पष्टता से महत्वपूर्ण विचलन नहीं है और यूएसएसए1976 मानक वातावरण की सभी गणनाओं के लिए R∗ के इस मान का उपयोग करता है। R के आईएसओ मान का उपयोग करते समय परिकलित दबाव 11 किलोमीटर पर केवल 0.62 [[पास्कल (यूनिट)|पास्कल (इकाई)]] (केवल 17.4 सेंटीमीटर या 6.8 इंच के अंतर के बराबर) और 20 किमी पर 0.292 Pa (केवल 33.8 सेमी या 13.2 के अंतर के बराबर) बढ़ जाता है। में) है। | ||
यह भी ध्यान दें कि यह 2019 एसआई पुनर्परिभाषा से अधिक पहले था | जिसके माध्यम से स्थिरांक को एक स्पष्ट मान दिया गया था। | यह भी ध्यान दें कि यह 2019 एसआई पुनर्परिभाषा से अधिक पहले था | जिसके माध्यम से स्थिरांक को एक स्पष्ट मान दिया गया था। |
Revision as of 12:28, 2 June 2023
आर. का मान[1] | इकाई |
---|---|
एसआई इकाइयां | |
8.31446261815324 | J⋅K−1⋅mol−1 |
8.31446261815324 | m3⋅Pa⋅K−1⋅mol−1 |
8.31446261815324 | kg⋅m2⋅s−2⋅K−1⋅mol−1 |
अन्य सामान्य इकाइयां | |
8314.46261815324 | L⋅Pa⋅K−1⋅mol−1 |
8.31446261815324 | L⋅kPa⋅K−1⋅mol−1 |
0.0831446261815324 | L⋅bar⋅K−1⋅mol−1 |
8.31446261815324×107 | erg⋅K−1⋅mol−1 |
0.730240507295273 | atm⋅ft3⋅lbmol−1⋅°R−1 |
10.731577089016 | psi⋅ft3⋅lbmol−1⋅°R−1 |
1.985875279009 | BTU⋅lbmol−1⋅°R−1 |
297.031214 | inH2O⋅ft3⋅lbmol−1⋅°R−1 |
554.984319180 | torr⋅ft3⋅lbmol−1⋅°R−1 |
0.082057366080960 | L⋅atm⋅K−1⋅mol−1 |
62.363598221529 | L⋅Torr⋅K−1⋅mol−1 |
1.98720425864083... | cal⋅K−1⋅mol−1 |
8.20573660809596...×10−5 | m3⋅atm⋅K−1⋅mol−1 |
मोलर गैस स्थिरांक (गैस स्थिरांक, सार्वभौमिक गैस स्थिरांक या आदर्श गैस स्थिरांक के रूप में भी जाना जाता है) को प्रतीक R या R द्वारा निरूपित किया जाता है | यह बोल्ट्ज़मैन स्थिरांक के समतुल्य मोलर है | जो पदार्थ की प्रति मात्रा प्रति तापमान ऊर्जा की इकाइयों में व्यक्त किया जाता है, अर्थात दबाव-मात्रा उत्पाद, प्रति कण प्रति तापमान वृद्धि ऊर्जा के अतिरिक्त स्थिरांक भी बॉयल के नियम, चार्ल्स के नियम, अवोगाद्रो के नियम और गे-लुसाक के नियम के स्थिरांक का एक संयोजन है। यह एक भौतिक स्थिरांक है | जो भौतिक विज्ञानों में कई मूलभूत समीकरणों में चित्रित किया गया है | जैसे कि आदर्श गैस नियम, अरहेनियस समीकरण और नर्नस्ट समीकरण है।
गैस स्थिरांक आनुपातिकता का स्थिरांक है | जो भौतिकी में ऊर्जा मापदंड को तापमान मापदंड और पदार्थ की मात्रा के लिए उपयोग किए जाने वाले मापदंड से संबंधित करता है। इस प्रकार, गैस स्थिरांक का मान अंततः ऊर्जा, तापमान और पदार्थ की मात्रा की इकाइयों की स्थापना में ऐतिहासिक निर्णयों और दुर्घटनाओं से प्राप्त होता है। बोल्ट्ज़मैन स्थिरांक और अवोगाद्रो स्थिरांक समान रूप से निर्धारित किए गए थे | जो अलग-अलग ऊर्जा को तापमान और कणों की संख्या को पदार्थ की मात्रा से संबंधित करते हैं।
गैस स्थिरांक R को अवोगाद्रो स्थिरांक NA के रूप में परिभाषित किया गया है बोल्ट्ज़मैन स्थिरांक k(या kB) से गुणा किया जाता है |
कुछ लोगों ने सुझाव दिया है कि फ्रांसीसी लोगों के रसायनज्ञ हेनरी विक्टर रेग्नॉल्ट के सम्मान में प्रतीक R को 'रेग्नॉल्ट स्थिरांक' नाम देना उचित हो सकता है | जिनके स्पष्ट प्रायोगिक डेटा का उपयोग स्थिरांक के प्रारंभिक मूल्य की गणना के लिए किया गया था। चूंकि, स्थिरांक का प्रतिनिधित्व करने के लिए अक्षर R की उत्पत्ति भ्रामक है। क्लॉसियस के छात्र ए.एफ. होर्स्टमैन (1873) द्वारा सार्वभौमिक गैस स्थिरांक को स्पष्ट रूप से स्वतंत्र रूप से प्रस्तुत किया गया था।[3][4] और दिमित्री मेंडेलीव जिन्होंने 12 सितंबर, 1874 को पहली बार इसकी सूचना दी थी।[5] गैसों के गुणों के अपने व्यापक मापन का उपयोग करते हुए,[6][7] मेंडेलीव ने भी इसकी उच्च परिशुद्धता के साथ गणना की, इसके आधुनिक मूल्य के 0.3% के अंदर [8] आदर्श गैस नियम में गैस स्थिरांक होता है |
आयाम
आदर्श गैस नियम PV = nRT से हम पाते हैं |
जहां P दबाव है, V आयतन है, n किसी दिए गए पदार्थ के मोल्स की संख्या है, और T तापमान है।
जैसा कि दबाव को माप के प्रति क्षेत्र बल के रूप में परिभाषित किया गया है | गैस समीकरण को इस प्रकार भी लिखा जा सकता है |
(लंबाई)2 और (लंबाई)3 क्रमशः क्षेत्र और आयतन हैं । इसलिए:
चूंकि बल × लंबाई = कार्य:
R का भौतिक महत्व कार्य प्रति डिग्री प्रति मोल है। इसे काम या ऊर्जा (जैसे जौल) का प्रतिनिधित्व करने वाली इकाइयों के किसी भी समुच्चय में व्यक्त किया जा सकता है | इकाइयों को पूर्ण मापदंड पर तापमान की डिग्री का प्रतिनिधित्व करने वाली इकाइयां (जैसे केल्विन या रैंकिन स्केल), और इकाइयों की किसी भी प्रणाली को मोल या समान शुद्ध संख्या नामित किया जा सकता है। यह एक प्रणाली में मैक्रोस्कोपिक द्रव्यमान और मूलभूत कण संख्याओं के समीकरण की अनुमति देता है | जैसे एक आदर्श गैस (एवोगैड्रो स्थिरांक देखें)।
एक मोल के अतिरिक्त सामान्य घन मीटर पर विचार करके निरंतर व्यक्त किया जा सकता है।
अन्यथा हम यह भी कह सकते हैं कि:
इसलिए, हम R को इस प्रकार लिख सकते हैं |
और इसलिए, SI आधार इकाइयों के संदर्भ में:
- R = 8.314462618... kg⋅m2⋅s−2⋅K−1⋅mol−1.
बोल्ट्ज़मैन स्थिरांक के साथ संबंध
बोल्ट्जमान स्थिरांक kB (वैकल्पिक रूप से k) पदार्थ की मात्रा, n, के अतिरिक्त शुद्ध कण गणना, N में कार्य करके मोलर गैस स्थिरांक के स्थान पर उपयोग किया जा सकता है |
जहां NA अवोगाद्रो नियतांक है। उदाहरण के लिए, बोल्ट्जमैन स्थिरांक के संदर्भ में आदर्श गैस नियम है |
जहां N कणों की संख्या है (इस स्थिति में अणु), या स्थानीय रूप धारण करने वाली एक विषम प्रणाली को सामान्य करने के लिए:
जहां ρN = N/V संख्या घनत्व है।
परिभाषित मूल्य के साथ मापन और प्रतिस्थापन
2006 तक,R का सबसे स्पष्ट माप विभिन्न दबावों P पर पानी के तिहरे बिंदु के तापमान T पर आर्गन में ध्वनि की गति ca(P, T), को मापकर प्राप्त किया गया था और शून्य-दबाव सीमा ca(0, t) तक एक्सट्रपलेशन R का मान तब संबंध से प्राप्त किया जाता है |
जहाँ:
- γ0 ताप क्षमता अनुपात है (5/3 आर्गन जैसी मोनोएटोमिक गैसों के लिए);
- T उस समय केल्विन की परिभाषा के अनुसार तापमान TTPW = 273.16 K है |
- Ar(Ar) आर्गन का आपेक्षिक परमाणु द्रव्यमान है और Mu = 10−3 kg⋅mol−1 जैसा कि उस समय परिभाषित किया गया था।
चूंकि, एसआई आधार इकाइयों की 2019 की पुनर्परिभाषा के बाद, R का अब एक स्पष्ट मान है | जो अन्य स्पष्ट रूप से परिभाषित भौतिक स्थिरांक के संदर्भ में परिभाषित किया गया है।
विशिष्ट गैस स्थिरांक
Rspecific शुष्क हवा के लिए |
इकाई |
---|---|
287.052874 | J⋅kg−1⋅K−1 |
53.3523 | ft⋅lbf⋅lb−1⋅°R−1 |
1,716.46 | ft⋅lbf⋅slug−1⋅°R−1 |
माध्य मोलर द्रव्यमान पर आधारित शुष्क हवा के लिए 28.964917 g/mol. |
किसी गैस या गैसों के मिश्रण का विशिष्ट गैस स्थिरांक (Rspecific) गैस या मिश्रण के मोलर द्रव्यमान (M) द्वारा विभाजित मोलर गैस स्थिरांक द्वारा दिया जाता है।
जिस प्रकार मोलर गैस स्थिरांक को बोल्ट्ज़मैन स्थिरांक से संबंधित किया जा सकता है | उसी प्रकार गैस के आणविक द्रव्यमान द्वारा बोल्ट्ज़मैन स्थिरांक को विभाजित करके विशिष्ट गैस स्थिरांक को जोड़ा जा सकता है।
एक अन्य महत्वपूर्ण संबंध ऊष्मप्रवैगिकी से आता है। जूलियस रॉबर्ट वॉन मेयर का संबंध विशिष्ट गैस स्थिरांक को कैलोरी रूप से परिपूर्ण गैस और तापीय रूप से परिपूर्ण गैस के लिए विशिष्ट ताप क्षमता से संबंधित करता है।
जहां cp एक स्थिर दबाव और cv के लिए विशिष्ट ताप क्षमता है | स्थिर आयतन के लिए विशिष्ट ताप क्षमता है।[9] यह सामान्य है, विशेष रूप से इंजीनियरिंग अनुप्रयोगों में, प्रतीक R द्वारा विशिष्ट गैस स्थिरांक का प्रतिनिधित्व करने के लिए ऐसे स्थितियों में, सार्वभौमिक गैस स्थिरांक को सामान्यतः एक अलग प्रतीक दिया जाता है जैसे कि R इसे भेद करने के लिए किसी भी स्थिति में, गैस स्थिरांक के संदर्भ और/या इकाई को यह स्पष्ट करना चाहिए कि क्या सार्वभौमिक या विशिष्ट गैस स्थिरांक को संदर्भित किया जा रहा है। [10]
हवा के स्थिति में, सही गैस नियम और मानक समुद्र-स्तर की स्थिति (एसएसएल) (वायु घनत्व ρ0 = 1.225 किग्रा/मी3, तापमान T0 = 288.15 केल्विन और दबाव p0 = 101325 Pa), हमारे पास वह Rair = पी0/(R0T0) = 287.052874247 J·kg−1·K−1 है | फिर हवा के मोलर द्रव्यमान की गणना M0 = R/Rair = 28.964917 g/mol. द्वारा की जाती है |[11]
यू.एस. मानक वातावरण
अमेरिकी मानक वायुमंडल, 1976 (यूएसएसए1976) गैस स्थिरांक R को परिभाषित करता है | जैसा:[12][13]
- R∗ = 8.369432×103 N⋅m⋅kmol−1⋅K−1 = 8.31432 J⋅K−1⋅mol−1.
स्थिरांक में 1000 के परिणामी कारक के साथ किलोमोल के उपयोग पर ध्यान दें। यूएसएसए1976 स्वीकार करता है कि यह मान अवोगाद्रो स्थिरांक और बोल्ट्जमान स्थिरांक के लिए उद्धृत मानों के अनुरूप नहीं है।[13] यह असमानता स्पष्टता से महत्वपूर्ण विचलन नहीं है और यूएसएसए1976 मानक वातावरण की सभी गणनाओं के लिए R∗ के इस मान का उपयोग करता है। R के आईएसओ मान का उपयोग करते समय परिकलित दबाव 11 किलोमीटर पर केवल 0.62 पास्कल (इकाई) (केवल 17.4 सेंटीमीटर या 6.8 इंच के अंतर के बराबर) और 20 किमी पर 0.292 Pa (केवल 33.8 सेमी या 13.2 के अंतर के बराबर) बढ़ जाता है। में) है।
यह भी ध्यान दें कि यह 2019 एसआई पुनर्परिभाषा से अधिक पहले था | जिसके माध्यम से स्थिरांक को एक स्पष्ट मान दिया गया था।
संदर्भ
- ↑ "2018 CODATA Value: molar gas constant". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2019-05-20.
- ↑ "106वीं बैठक की कार्यवाही" (PDF). 16–20 October 2017.
- ↑ Jensen, William B. (July 2003). "यूनिवर्सल गैस स्थिरांक आर". J. Chem. Educ. 80 (7): 731. Bibcode:2003JChEd..80..731J. doi:10.1021/ed080p731.
- ↑ "इतिहासकार से पूछें: द यूनिवर्सल गैस कॉन्स्टेंट — इसे R अक्षर से क्यों दर्शाया जाता है?" (PDF).
{{cite web}}
: no-break space character in|title=
at position 47 (help) - ↑ Mendeleev, Dmitri I. (September 12, 1874). "12 सितंबर, 1874 को केमिकल सोसायटी की बैठक की कार्यवाही से एक प्रयास". Journal of Russian Chemical-Physical Society, Chemical Part. VI (7): 208–209.
- ↑ Mendeleev, Dmitri I. (1875). गैसों की लोच पर. A.M. Kotomin, St.-Petersburg.
- ↑ D. Mendeleev. On the elasticity of gases. 1875 (in Russian)
- ↑ Mendeleev, Dmitri I. (March 22, 1877). "मारियट के नियम पर मेंडेलीफ का शोध 1". Nature. 15 (388): 498–500. Bibcode:1877Natur..15..498D. doi:10.1038/015498a0.
- ↑ Anderson, Hypersonic and High-Temperature Gas Dynamics, AIAA Education Series, 2nd Ed, 2006
- ↑ Moran and Shapiro, Fundamentals of Engineering Thermodynamics, Wiley, 4th Ed, 2000
- ↑ यूएस मानक वायुमंडल का मैनुअल (PDF) (3 ed.). National Aeronautics and Space Administration. 1962. pp. 7–11.
- ↑ "मानक वातावरण". Retrieved 2007-01-07.
- ↑ 13.0 13.1 NOAA, NASA, USAF (1976). अमेरिकी मानक वातावरण, 1976 (PDF). U.S. Government Printing Office, Washington, D.C. NOAA-S/T 76-1562.
{{cite book}}
: CS1 maint: multiple names: authors list (link) Part 1, p. 3, (Linked file is 17 Meg)
इस पेज में लापता आंतरिक लिंक की सूची
- बोल्ट्जमैन स्थिरांक
- 2019 एसआई आधार इकाइयों की पुनर्परिभाषा
- फ्रेंच के लोग
- मोलर गर्मी
- युवाओं का एसआई आधार
- पानी का तिगुना बिंदु
- 2019 एसआई आधार इकाइयों की पुनर्परिभाषा
- मोलर जन
- विशिष्ट ऊष्मा क्षमता
- मानक समुद्री स्तर की स्थिति
- अंतरराष्ट्रीय मानकीकरण संगठन
बाहरी कड़ियाँ
- Ideal gas calculator Archived 2012-07-15 at the Wayback Machine – Ideal gas calculator provides the correct information for the moles of gas involved.
- Individual Gas Constants and the Universal Gas Constant – Engineering Toolbox
श्रेणी:आदर्श गैस श्रेणी:भौतिक स्थिरांक श्रेणी:पदार्थ की मात्रा श्रेणी: सांख्यिकीय यांत्रिकी श्रेणी: ऊष्मप्रवैगिकी