एक आव्यूह की समन्वयन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 24: Line 24:
आइगेनवेक्टर को दोहरा सूचकांक का उपयोग करके आइगेनवेल्यूज़ ​​​​द्वारा अनुक्रमित किया जा सकता है {{math|'''v'''<sub>''ij''</sub>}} आइगेनवेल्यू , {{mvar|j}}वें आइगेनवेक्टर के लिए {{mvar|i}}वां आइगेनवैल्यू साथ। आइगेनवेक्टरों को''k'' = 1, 2, ..., ''N''<sub>'''v'''</sub>. के साथ एकल सूचकांक  {{math|'''v'''<sub>''k''</sub>}}, के सरल अंकन का उपयोग करके भी अनुक्रमित किया जा सकता है।
आइगेनवेक्टर को दोहरा सूचकांक का उपयोग करके आइगेनवेल्यूज़ ​​​​द्वारा अनुक्रमित किया जा सकता है {{math|'''v'''<sub>''ij''</sub>}} आइगेनवेल्यू , {{mvar|j}}वें आइगेनवेक्टर के लिए {{mvar|i}}वां आइगेनवैल्यू साथ। आइगेनवेक्टरों को''k'' = 1, 2, ..., ''N''<sub>'''v'''</sub>. के साथ एकल सूचकांक  {{math|'''v'''<sub>''k''</sub>}}, के सरल अंकन का उपयोग करके भी अनुक्रमित किया जा सकता है।


== एक आव्यूह का ईजेनडीकम्पोज़िशन ==
== एक आव्यूह का आइगेनडीकम्पोज़िशन ==


मान लीजिए A एक वर्ग n × n मैट्रिक्स है जिसमें n रैखिक रूप से स्वतंत्र आइगेनवेक्टर qi (जहाँ i = 1, ..., n) है। तब A को गुणनखंडित किया जा सकता है
मान लीजिए A एक वर्ग n × n मैट्रिक्स है जिसमें n रैखिक रूप से स्वतंत्र आइगेनवेक्टर qi (जहाँ i = 1, ..., n) है। तब A को गुणनखंडित किया जा सकता है
:<math>\mathbf{A}=\mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{-1}  </math>
:<math>\mathbf{A}=\mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{-1}  </math>
जहाँ {{math|'''Q'''}} वर्ग है {{math|''n'' × ''n''}} आव्यूह जिसका {{mvar|i}}वाँ स्तंभ आइगेनवेक्टर है {{mvar|q<sub>i</sub>}} का {{math|'''A'''}}, और {{math|'''Λ'''}} [[विकर्ण मैट्रिक्स|विकर्ण आव्यूह]] है जिसके विकर्ण तत्व संगत आइगेनवेल्यूज़ ​​​​हैं, {{math|1=''Λ<sub>ii</sub>'' = ''λ<sub>i</sub>''}}. ध्यान दें कि इस तरह से केवल विकर्ण आव्यूह को कारक बनाया जा सकता है। उदाहरण के लिए, [[Index.php?title=त्रुटिपूर्ण मैट्रिक्स|त्रुटिपूर्ण मैट्रिक्स]] <math>\left[ \begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix} \right]</math> (जो एक [[कतरनी मैट्रिक्स|कतरनी आव्यूह]] है) को विकर्ण नहीं किया जा सकता। {{mvar|n}|n}} आइगेनवेक्टर {{mvar|q<sub>i</sub>}} आमतौर पर सामान्यीकृत होते हैं, लेकिन उन्हें होने की आवश्यकता नहीं होती है। का एक गैर-सामान्यीकृत सेट {{mvar|n}} आइगेनवेक्टर, {{mvar|v<sub>i</sub>}} के कॉलम के रूप में भी इस्तेमाल किया जा सकता है {{math|'''Q'''}}. इसे इस बात से समझा जा सकता है कि आइगेनवेक्टरों का परिमाण {{math|'''Q'''}} की उपस्थिति से अपघटन में रद्द हो जाता है {{math|'''Q'''<sup>−1</sup>}}. यदि आइगेनवेल्यूज़ ​​​​में से एक {{math|1=''λ<sub>i</sub>''}} में एक से अधिक रैखिक रूप से स्वतंत्र आइगेनवेक्टर हैं (अर्थात, की ज्यामितीय बहुलता {{math|1=''λ<sub>i</sub>''}} 1 से अधिक है), तो इस आइगेनवैल्यू के लिए ये आइगेनवेक्टर {{math|1=''λ<sub>i</sub>''}} पारस्परिक रूप से ऑर्थोगोनल होने के लिए चुना जा सकता है; हालांकि, अगर दो आइगेनवेक्टर दो अलग-अलग ईजेनवैल्यू से संबंधित हैं, तो उनके लिए एक दूसरे के लिए ऑर्थोगोनल होना असंभव हो सकता है (नीचे उदाहरण देखें)। एक विशेष मामला यह है कि अगर {{math|'''A'''}} एक सामान्य आव्यूह है, फिर स्पेक्ट्रल प्रमेय द्वारा, '''A''' को ऑर्थोनॉर्मल आधार {q<sub>i</sub>} में विकर्ण करना हमेशा संभव होता है।
जहाँ {{math|'''Q'''}} वर्ग है {{math|''n'' × ''n''}} आव्यूह जिसका {{mvar|i}}वाँ स्तंभ आइगेनवेक्टर है {{mvar|q<sub>i</sub>}} का {{math|'''A'''}}, और {{math|'''Λ'''}} [[विकर्ण मैट्रिक्स|विकर्ण आव्यूह]] है जिसके विकर्ण तत्व संगत आइगेनवेल्यूज़ ​​​​हैं, {{math|1=''Λ<sub>ii</sub>'' = ''λ<sub>i</sub>''}}. ध्यान दें कि इस तरह से केवल विकर्ण आव्यूह को कारक बनाया जा सकता है। उदाहरण के लिए, [[Index.php?title=त्रुटिपूर्ण मैट्रिक्स|त्रुटिपूर्ण मैट्रिक्स]] <math>\left[ \begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix} \right]</math> (जो एक [[कतरनी मैट्रिक्स|कतरनी आव्यूह]] है) को विकर्ण नहीं किया जा सकता। {{mvar|n}|n}} आइगेनवेक्टर {{mvar|q<sub>i</sub>}} आमतौर पर सामान्यीकृत होते हैं, लेकिन उन्हें होने की आवश्यकता नहीं होती है। का एक गैर-सामान्यीकृत सेट {{mvar|n}} आइगेनवेक्टर, {{mvar|v<sub>i</sub>}} के कॉलम के रूप में भी इस्तेमाल किया जा सकता है {{math|'''Q'''}}. इसे इस बात से समझा जा सकता है कि आइगेनवेक्टरों का परिमाण {{math|'''Q'''}} की उपस्थिति से अपघटन में रद्द हो जाता है {{math|'''Q'''<sup>−1</sup>}}. यदि आइगेनवेल्यूज़ ​​​​में से एक {{math|1=''λ<sub>i</sub>''}} में एक से अधिक रैखिक रूप से स्वतंत्र आइगेनवेक्टर हैं (अर्थात, की ज्यामितीय बहुलता {{math|1=''λ<sub>i</sub>''}} 1 से अधिक है), तो इस आइगेनवैल्यू के लिए ये आइगेनवेक्टर {{math|1=''λ<sub>i</sub>''}} पारस्परिक रूप से लांबिक होने के लिए चुना जा सकता है; हालांकि, अगर दो आइगेनवेक्टर दो अलग-अलग आइगेनवैल्यू से संबंधित हैं, तो उनके लिए एक दूसरे के लिए लांबिक होना असंभव हो सकता है (नीचे उदाहरण देखें)। एक विशेष मामला यह है कि अगर {{math|'''A'''}} एक सामान्य आव्यूह है, फिर स्पेक्ट्रल प्रमेय द्वारा, '''A''' को प्रसामान्य लांबिक विश्लेषण आधार {q<sub>i</sub>} में विकर्ण करना हमेशा संभव होता है।


अपघटन आइगेनवेक्टर की मौलिक संपत्ति से प्राप्त किया जा सकता है:
अपघटन आइगेनवेक्टर की मौलिक संपत्ति से प्राप्त किया जा सकता है:
Line 38: Line 38:
रैखिक रूप से स्वतंत्र आइगेनवेक्टर {{mvar|q<sub>i</sub>}} अशून्य आइगेनवेल्यूज़ ​​​​के साथ सभी संभावित उत्पादों के लिए एक आधार (जरूरी नहीं कि orthonormal) बनाते हैं {{math|''A'''''x'''}}, के लिए {{math|'''x''' ∈ '''C'''<sup>''n''</sup>}}, जो संबंधित [[मैट्रिक्स परिवर्तन|आव्यूह परिवर्तन]] की [[छवि (गणित)]] (या किसी फलन की श्रेणी) के समान है, और आव्यूह का [[स्तंभ स्थान]] भी है {{math|'''A'''}}. रैखिक रूप से स्वतंत्र आइगेनवेक्टरों की संख्या {{mvar|q<sub>i</sub>}} गैर शून्य आइगेनवेल्यूज़ ​​​​के साथ आव्यूह के [[रैंक (रैखिक बीजगणित)]] के बराबर है {{math|'''A'''}}, और संबंधित आव्यूह परिवर्तन की छवि (या श्रेणी) के आयाम के साथ-साथ इसके स्तंभ स्थान भी है।
रैखिक रूप से स्वतंत्र आइगेनवेक्टर {{mvar|q<sub>i</sub>}} अशून्य आइगेनवेल्यूज़ ​​​​के साथ सभी संभावित उत्पादों के लिए एक आधार (जरूरी नहीं कि orthonormal) बनाते हैं {{math|''A'''''x'''}}, के लिए {{math|'''x''' ∈ '''C'''<sup>''n''</sup>}}, जो संबंधित [[मैट्रिक्स परिवर्तन|आव्यूह परिवर्तन]] की [[छवि (गणित)]] (या किसी फलन की श्रेणी) के समान है, और आव्यूह का [[स्तंभ स्थान]] भी है {{math|'''A'''}}. रैखिक रूप से स्वतंत्र आइगेनवेक्टरों की संख्या {{mvar|q<sub>i</sub>}} गैर शून्य आइगेनवेल्यूज़ ​​​​के साथ आव्यूह के [[रैंक (रैखिक बीजगणित)]] के बराबर है {{math|'''A'''}}, और संबंधित आव्यूह परिवर्तन की छवि (या श्रेणी) के आयाम के साथ-साथ इसके स्तंभ स्थान भी है।


रैखिक रूप से स्वतंत्र आइगेनवेक्टर {{mvar|q<sub>i</sub>}} आव्यूह परिवर्तन के शून्य स्थान (कर्नेल के रूप में भी जाना जाता है) के लिए शून्य फॉर्म के आधार के साथ (जिसे ऑर्थोनॉर्मल चुना जा सकता है) {{math|'''A'''}} है।
रैखिक रूप से स्वतंत्र आइगेनवेक्टर {{mvar|q<sub>i</sub>}} आव्यूह परिवर्तन के शून्य स्थान (कर्नेल के रूप में भी जाना जाता है) के लिए शून्य फॉर्म के आधार के साथ (जिसे प्रसामान्य लांबिक विश्लेषण चुना जा सकता है) {{math|'''A'''}} है।


=== उदाहरण ===
=== उदाहरण ===
Line 161: Line 161:
{{main |वर्णक्रमीय प्रमेय}}
{{main |वर्णक्रमीय प्रमेय}}


[[Image:Taxonomy of Complex Matrices.svg|thumb|428x428px|दाएं|मैट्रिसेस के महत्वपूर्ण वर्गों के सबसेट]]
[[Image:Taxonomy of Complex Matrices.svg|thumb|428x428px|आव्यूह के महत्वपूर्ण वर्गों के सबसेट]]


जब {{math|'''A'''}} सामान्य या वास्तविक सममित आव्यूह है, अपघटन को वर्णक्रमीय अपघटन कहा जाता है, जो वर्णक्रमीय प्रमेय से प्राप्त होता है।
जब {{math|'''A'''}} सामान्य या वास्तविक सममित आव्यूह है, अपघटन को वर्णक्रमीय अपघटन कहा जाता है, जो वर्णक्रमीय प्रमेय से प्राप्त होता है।
Line 177: Line 177:
एक विशेष मामले के रूप में, प्रत्येक के लिए {{math|''n'' × ''n''}} वास्तविक सममित आव्यूह, आइगेनवेल्यूज़ ​​​​वास्तविक हैं और आइगेनवेक्टर को वास्तविक और [[Index.php?title=प्रसामान्य लांबिक विश्लेषण|प्रसामान्य लांबिक विश्लेषण]] चुना जा सकता है। इस प्रकार एक वास्तविक सममित आव्यूह {{math|'''A'''}} के रूप में विघटित किया जा सकता है
एक विशेष मामले के रूप में, प्रत्येक के लिए {{math|''n'' × ''n''}} वास्तविक सममित आव्यूह, आइगेनवेल्यूज़ ​​​​वास्तविक हैं और आइगेनवेक्टर को वास्तविक और [[Index.php?title=प्रसामान्य लांबिक विश्लेषण|प्रसामान्य लांबिक विश्लेषण]] चुना जा सकता है। इस प्रकार एक वास्तविक सममित आव्यूह {{math|'''A'''}} के रूप में विघटित किया जा सकता है
:<math>\mathbf{A} = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^\mathsf{T}</math>
:<math>\mathbf{A} = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^\mathsf{T}</math>
कहाँ {{math|'''Q'''}} एक ऑर्थोगोनल आव्यूह है जिसके कॉलम वास्तविक, ऑर्थोनॉर्मल आइगेनवेक्टर हैं {{math|'''A'''}}, और {{math|'''Λ'''}} एक विकर्ण आव्यूह है जिसकी प्रविष्टियाँ आइगेनवेल्यूज़ ​​​​हैं {{math|'''A'''}}.<ref>{{harvtxt|Horn|Johnson|1985}}, p. 136, Corollary 2.5.11</ref>
जहाँ {{math|'''Q'''}} एक लांबिक आव्यूह है जिसके कॉलम वास्तविक, प्रसामान्य लांबिक विश्लेषण आइगेनवेक्टर {{math|'''A'''}} हैं और {{math|'''Λ'''}} एक विकर्ण आव्यूह है जिसकी प्रविष्टियाँ आइगेनवेल्यूज़ ​​​​हैं {{math|'''A'''}}.<ref>{{harvtxt|Horn|Johnson|1985}}, p. 136, Corollary 2.5.11</ref>




== उपयोगी तथ्य ==
== उपयोगी तथ्य ==


=== आइगेनवेल्यूज़ ​​​​=== के बारे में उपयोगी तथ्य
=== आइगेनवेल्यूज़ के बारे में उपयोगी तथ्य ===
*आइगेनवैल्यू का गुणनफल के निर्धारक के बराबर है {{math|'''A'''}} <math display="block">\det\left(\mathbf{A}\right) = \prod_{i=1}^{N_\lambda}{\lambda_i^{n_i}} </math> ध्यान दें कि प्रत्येक आइगेनवैल्यू की घात होती है {{math|''n<sub>i</sub>''}}, बीजगणितीय बहुलता।
*आइगेनवैल्यू का गुणनफल के निर्धारक {{math|'''A'''}} के बराबर है:<math display="block">\det\left(\mathbf{A}\right) = \prod_{i=1}^{N_\lambda}{\lambda_i^{n_i}} </math> ध्यान दें कि प्रत्येक आइगेनवैल्यू की घात {{math|''n<sub>i</sub>''}}, बीजगणितीय बहुलता तक बढ़ाया जाता है
* आइगेनवैल्यू का योग के [[ट्रेस (रैखिक बीजगणित)]] के बराबर है {{math|'''A'''}} <math display="block"> \operatorname{tr}\left(\mathbf{A}\right) = \sum_{i=1}^{N_\lambda}{{n_i}\lambda_i} </math> ध्यान दें कि प्रत्येक आइगेनवैल्यू से गुणा किया जाता है {{math|''n<sub>i</sub>''}}, बीजगणितीय बहुलता।
* आइगेनवैल्यू का योग के [[ट्रेस (रैखिक बीजगणित)]] {{math|'''A'''}} के बराबर है:<math display="block"> \operatorname{tr}\left(\mathbf{A}\right) = \sum_{i=1}^{N_\lambda}{{n_i}\lambda_i} </math> ध्यान दें कि प्रत्येक आइगेनवैल्यू {{math|''n<sub>i</sub>''}}, बीजगणितीय बहुलता से गुणा किया जाता है।
*यदि के आइगेनवेल्यूज़ {{math|'''A'''}} हैं {{math|''λ''<sub>''i''</sub>}}, और {{math|'''A'''}} व्युत्क्रम है, फिर के आइगेनवेल्यूज़ {{math|'''A'''<sup>−1</sup>}} सरल हैं {{math|''λ''{{su|b=''i''|p=−1}}}}.
*यदि A के आइगेनमान ''λ<sub>i</sub>'' हैं, और A व्युत्क्रमणीय है, तो '''A'''<sup>−1</sup> के आइगेनमान केवल  ''λ<sub>i</sub>'' <sup>-1</sup> है।         
*यदि के आइगेनवेल्यूज़ {{math|'''A'''}} हैं {{math|''λ''<sub>''i''</sub>}}, फिर के आइगेनवेल्यूज़ {{math|''f''&thinsp;('''A''')}} सरल हैं {{math|''f''&thinsp;(''λ''<sub>''i''</sub>)}}, किसी भी [[होलोमॉर्फिक फ़ंक्शन|होलोमॉर्फिक फलन]] के लिए {{mvar|f}}.
*यदि A के आइगेनवैल्यू ''λ<sub>i</sub>'' हैं, तो ''f'' ('''A''') के आइगेनवैल्यू केवल  ''f''(''λ<sub>i</sub>'') हैं, किसी भी होलोमोर्फिक फलन ''f'' के लिए है।


=== आइगेनवेक्टर === के बारे में उपयोगी तथ्य
=== आइगेनवेक्टर के बारे में उपयोगी तथ्य ===
* अगर {{math|'''A'''}} हर्मिटियन आव्यूह और पूर्ण-रैंक है, आइगेनवेक्टरों के आधार को पारस्परिक रूप से [[ ओर्थोगोनल ]] चुना जा सकता है। आइगेनवैल्यू वास्तविक हैं।
* अगर {{math|'''A'''}} हर्मिटियन आव्यूह और पूर्ण-रैंक है, आइगेनवेक्टरों के आधार को पारस्परिक रूप से [[ ओर्थोगोनल | ओर्थोगोनल]] चुना जा सकता है। आइगेनवैल्यू वास्तविक हैं।
* के आइगेनवेक्टर {{math|'''A'''<sup>−1</sup>}} के आइगेनवेक्टर के समान हैं {{math|'''A'''}}.
* आइगेनवेक्टर {{math|'''A'''<sup>−1</sup>}} के आइगेनवेक्टर {{math|'''A'''}} के समान हैं।
* आइगेनवेक्टर को केवल गुणक स्थिरांक तक परिभाषित किया जाता है। यानी अगर {{math|1='''Av''' = ''λ'''''v'''}} तब {{math|''c'''''v'''}} किसी भी अदिश के लिए एक eigenvector भी है {{math|''c'' ≠ 0}}. विशेष रूप से, {{math|−'''v'''}} और {{math|1=''e''<sup>''iθ''</sup>'''v'''}} (किसी θ के लिए) भी आइगेनवेक्टर हैं।
* आइगेनवेक्टर को केवल गुणक स्थिरांक तक परिभाषित किया जाता है। यानी अगर {{math|1='''Av''' = ''λ'''''v'''}} तब {{math|''c'''''v'''}} किसी भी अदिश के लिए एक आइगेनवेक्टर भी है {{math|''c'' ≠ 0}}. विशेष रूप से, {{math|−'''v'''}} और {{math|1=''e''<sup>''iθ''</sup>'''v'''}} (किसी θ के लिए) भी आइगेनवेक्टर हैं।
* पतित ईजेनवेल्यूज (एक से अधिक आइगेनवेक्टर वाले ईजेनवैल्यू) के मामले में, आइगेनवेक्टरों को रैखिक परिवर्तन की एक अतिरिक्त स्वतंत्रता है, अर्थात, ईजेनवैल्यू साझा करने वाले आइगेनवेक्टरों का कोई भी रैखिक (ऑर्थोनॉर्मल) संयोजन (पतित उप-स्थान में) है स्वयं एक आइगेनवेक्टर (उप-स्थान में)
* पतित आइगेनवैल्यू (एक से अधिक आइगेनवेक्टर वाले आइगेनवैल्यू) के मामले में, आइगेनवेक्टरों को रैखिक परिवर्तन की एक अतिरिक्त स्वतंत्रता है, अर्थात, आइगेनवैल्यू साझा करने वाले आइगेनवेक्टरों का कोई भी रैखिक (प्रसामान्य लांबिक विश्लेषण) संयोजन (पतित उप-स्थान में) स्वयं एक आइगेनवेक्टर (उप-स्थान में) है।


=== ईजेनडीकंपोजीशन === के बारे में उपयोगी तथ्य
=== आइगेनडीकंपोजीशन के बारे में उपयोगी तथ्य ===
 
* {{math|'''A'''}} आइगेनडीकम्पोज किया जा सकता है अगर और केवल अगर रैखिक रूप से स्वतंत्र आइगेनवेक्टर की संख्या, {{math|''N''<sub>'''v'''</sub>}}, एक आइगेनवेक्टर  {{math|1=''N''<sub>'''v'''</sub> = ''N''}} के आयाम के बराबर है।
* {{math|'''A'''}} आइगेनडीकम्पोज किया जा सकता है अगर और केवल अगर रैखिक रूप से स्वतंत्र आइगेनवेक्टर की संख्या, {{math|''N''<sub>'''v'''</sub>}}, एक eigenvector के आयाम के बराबर है: {{math|1=''N''<sub>'''v'''</sub> = ''N''}}
* यदि अदिशों का क्षेत्र बीजगणितीय रूप से बंद है और यदि {{math|''p''(''λ'')}} की कोई पुनरावर्तित जड़ें नहीं हैं, अर्थात यदि <math>N_\lambda = N,</math> तब {{math|'''A'''}} आइगेनडीकम्पोज हो सकता है।
* यदि अदिशों का क्षेत्र बीजगणितीय रूप से बंद है और यदि {{math|''p''(''λ'')}} की कोई पुनरावर्तित जड़ें नहीं हैं, अर्थात यदि <math>N_\lambda = N,</math> तब {{math|'''A'''}} आइगेनडीकम्पोज हो सकता है।
* कथन{{math|'''A'''}} आइगेनडीकम्पोज किया जा सकता है इसका मतलब यह नहीं है {{math|'''A'''}} का व्युत्क्रम होता है क्योंकि कुछ आइगेनवेल्यूज़ ​​​​शून्य हो सकते हैं, जो व्युत्क्रमणीय नहीं है।
* कथन {{math|'''A'''}} आइगेनडीकम्पोज किया जा सकता है इसका मतलब यह नहीं है {{math|'''A'''}} का व्युत्क्रम होता है क्योंकि कुछ आइगेनवेल्यूज़ ​​​​शून्य हो सकते हैं, जो व्युत्क्रमणीय नहीं है।
* कथन{{math|'''A'''}} का प्रतिलोम होने का अर्थ यह नहीं है {{math|'''A'''}} आइगेनडीकम्पोज हो सकता है। एक प्रति उदाहरण है <math>\left[ \begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix} \right]</math>, जो एक व्युत्क्रम दोषपूर्ण आव्यूह है।
* कथन {{math|'''A'''}} का प्रतिलोम होने का अर्थ यह नहीं है कि {{math|'''A'''}} आइगेनडीकम्पोज हो सकता है। एक प्रति उदाहरण है <math>\left[ \begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix} \right]</math>, जो एक व्युत्क्रम दोषपूर्ण आव्यूह है।
 
=== आव्यूह व्युत्क्रम === के बारे में उपयोगी तथ्य


=== आव्यूह व्युत्क्रम के बारे में उपयोगी तथ्य ===
* {{math|'''A'''}} व्युत्क्रम जा सकता है [[अगर और केवल अगर]] सभी आइगेनवेल्यूज़ ​​​​अशून्य हैं: <math display="block">\lambda_i \ne 0 \quad \forall \,i</math>
* {{math|'''A'''}} व्युत्क्रम जा सकता है [[अगर और केवल अगर]] सभी आइगेनवेल्यूज़ ​​​​अशून्य हैं: <math display="block">\lambda_i \ne 0 \quad \forall \,i</math>
* अगर {{math|''λ<sub>i</sub>'' ≠ 0}} और {{math|1=''N''<sub>'''v'''</sub> = ''N''}}, व्युत्क्रम द्वारा दिया गया है <math display="block">\mathbf{A}^{-1} = \mathbf{Q}\mathbf{\Lambda}^{-1}\mathbf{Q}^{-1}</math>
* अगर {{math|''λ<sub>i</sub>'' ≠ 0}} और {{math|1=''N''<sub>'''v'''</sub> = ''N''}}, व्युत्क्रम द्वारा दिया गया है <math display="block">\mathbf{A}^{-1} = \mathbf{Q}\mathbf{\Lambda}^{-1}\mathbf{Q}^{-1}</math>
Line 208: Line 206:


== संख्यात्मक संगणना ==
== संख्यात्मक संगणना ==
{{details|eigenvalue algorithm}}
{{details|आइगेनवैल्यू कलन विधि}}


=== ईगेनवैल्यूज की संख्यात्मक गणना ===
=== आइगेनवेल्यूज़ की संख्यात्मक गणना ===


मान लीजिए कि हम किसी दिए गए आव्यूह के आइगेनवेल्यूज़ ​​​​की गणना करना चाहते हैं। यदि आव्यूह छोटा है, तो हम विशेषता बहुपद का उपयोग करके प्रतीकात्मक रूप से उनकी गणना कर सकते हैं। हालांकि, बड़े आव्यूह के लिए यह अक्सर असंभव होता है, इस मामले में हमें एक [[संख्यात्मक विश्लेषण]] का उपयोग करना चाहिए।
मान लीजिए कि हम किसी दिए गए आव्यूह के आइगेनवेल्यूज़ ​​​​की गणना करना चाहते हैं। यदि आव्यूह छोटा है, तो हम विशेषता बहुपद का उपयोग करके प्रतीकात्मक रूप से उनकी गणना कर सकते हैं। हालांकि, बड़े आव्यूह के लिए यह अक्सर असंभव होता है, इस मामले में हमें एक [[संख्यात्मक विश्लेषण]] का उपयोग करना चाहिए।


<nowiki>व्यवहार में, बड़े आव्यूहों के आइगेनवेल्यूज़ ​​की गणना विशेषता बहुपद का उपयोग करके नहीं की जाती है। बहुपद की गणना करना अपने आप में महंगा हो जाता है, और उच्च-स्तरीय बहुपद की सटीक (प्रतीकात्मक) जड़ों की गणना करना और व्यक्त करना मुश्किल हो सकता है: एबेल-रफिनी प्रमेय का तात्पर्य है कि उच्च-डिग्री (5 या ऊपर) बहुपदों की जड़ें सामान्य रूप से नहीं हो सकती हैं। प्रयोग करके व्यक्त किया जा सकता है {{mvar|n}वें जड़ें। इसलिए, आइगेनवेक्टर और आइगेनवेल्यूज़ ​​​​खोजने के लिए सामान्य एल्गोरिदम पुनरावृत्त विधि हैं।</nowiki>
व्यवहार में, बड़े आव्यूहों के आइगेनवैल्यू की गणना विशेषता बहुपद का उपयोग करके नहीं की जाती है। बहुपद की गणना करना अपने आप में महंगा हो जाता है, और उच्च-स्तरीय बहुपद की सटीक (प्रतीकात्मक) जड़ों की गणना करना और व्यक्त करना मुश्किल हो सकता है: एबेल-रफिनी प्रमेय का तात्पर्य है कि उच्च-डिग्री (5 या ऊपर) बहुपदों की जड़ें सामान्य रूप से नहीं हो सकती हैं। केवल nवें मूल का उपयोग करके व्यक्त किया जा सकता है। इसलिए, आइगेनवेक्टर और आइगेनवैल्यू खोजने के लिए सामान्य कलन विधि पुनरावृत्त हैं।


बहुपदों की अनुमानित जड़ों के लिए पुनरावृत्त संख्यात्मक एल्गोरिदम मौजूद हैं, जैसे कि न्यूटन की विधि, लेकिन सामान्य तौर पर विशेषता बहुपद की गणना करना और फिर इन विधियों को लागू करना अव्यावहारिक है। एक कारण यह है कि विशेषता बहुपद के गुणांकों में छोटे [[राउंड-ऑफ त्रुटि]]यां ईगेनवैल्यूज और आइगेनवेक्टरों में बड़ी त्रुटियां पैदा कर सकती हैं: जड़ें गुणांकों का एक अत्यंत बीमार कार्य हैं।<ref name=Trefethen>{{Cite book|author1-link=Lloyd N. Trefethen|author1-first=Lloyd N.|author1-last=Trefethen|author2-first=David|author2-last=Bau|title=संख्यात्मक रैखिक बीजगणित|isbn=978-0-89871-361-9|publisher=SIAM|year= 1997}}</ref>
बहुपदों की अनुमानित जड़ों के लिए पुनरावृत्त संख्यात्मक कलन विधि मौजूद हैं, जैसे कि न्यूटन की विधि, लेकिन सामान्य तौर पर विशेषता बहुपद की गणना करना और फिर इन विधियों को लागू करना अव्यावहारिक है। एक कारण यह है कि विशेषता बहुपद के गुणांकों में छोटे [[राउंड-ऑफ त्रुटि]]यां आइगेनवेल्यूज़ और आइगेनवेक्टरों में बड़ी त्रुटियां पैदा कर सकती हैं: मूल गुणांक का एक बहुत ही खराब शर्त वाला कार्य है।<ref name=Trefethen>{{Cite book|author1-link=Lloyd N. Trefethen|author1-first=Lloyd N.|author1-last=Trefethen|author2-first=David|author2-last=Bau|title=संख्यात्मक रैखिक बीजगणित|isbn=978-0-89871-361-9|publisher=SIAM|year= 1997}}</ref>
एक सरल और सटीक पुनरावृत्ति विधि [[शक्ति विधि]] है: एक यादृच्छिक वेक्टर {{math|'''v'''}} चुना जाता है और [[इकाई वेक्टर]] के अनुक्रम की गणना की जाती है
एक सरल और सटीक पुनरावृत्ति विधि [[शक्ति विधि]] है: एक यादृच्छिक सदिश {{math|'''v'''}} चुना जाता है और [[इकाई वेक्टर|इकाई सदिश]] के अनुक्रम की गणना की जाती है:
: <math>\frac{\mathbf{A}\mathbf{v}}{\left\|\mathbf{A}\mathbf{v}\right\|}, \frac{\mathbf{A}^2\mathbf{v}}{\left\|\mathbf{A}^2\mathbf{v}\right\|}, \frac{\mathbf{A}^3\mathbf{v}}{\left\|\mathbf{A}^3\mathbf{v}\right\|}, \ldots</math>
: <math>\frac{\mathbf{A}\mathbf{v}}{\left\|\mathbf{A}\mathbf{v}\right\|}, \frac{\mathbf{A}^2\mathbf{v}}{\left\|\mathbf{A}^2\mathbf{v}\right\|}, \frac{\mathbf{A}^3\mathbf{v}}{\left\|\mathbf{A}^3\mathbf{v}\right\|}, \ldots</math>
यह [[अनुक्रम]] [[लगभग हमेशा]] एक आइगेनवेक्टर में अभिसरण करेगा जो कि सबसे बड़ी परिमाण के आइगेनवैल्यूके अनुरूप है, बशर्ते कि {{math|'''v'''}} में आइगेनवेक्टर के आधार पर इस आइगेनवेक्टर का एक गैर-शून्य घटक है (और यह भी प्रदान किया गया है कि सबसे बड़ी परिमाण का केवल एक आइगेनवैल्यूहै)। यह सरल एल्गोरिथ्म कुछ व्यावहारिक अनुप्रयोगों में उपयोगी है; उदाहरण के लिए, [[Google]] अपने खोज इंजन में दस्तावेज़ों के [[ पृष्ठ रैंक ]] की गणना करने के लिए इसका उपयोग करता है।<ref>[[Ilse Ipsen|Ipsen, Ilse]], and Rebecca M. Wills, ''[https://www4.ncsu.edu/~ipsen/ps/slides_imacs.pdf Analysis and Computation of Google's PageRank]'', 7th IMACS International Symposium on Iterative Methods in Scientific Computing, Fields Institute, Toronto, Canada, 5–8 May 2005.</ref> साथ ही, कई अधिक परिष्कृत एल्गोरिदम के लिए पावर विधि शुरुआती बिंदु है। उदाहरण के लिए, अनुक्रम में न केवल अंतिम सदिश को रखते हुए, बल्कि क्रम में सभी सदिशों के रैखिक फैलाव को देखते हुए, आइगेनवेक्टर के लिए एक बेहतर (तेजी से अभिसरण) सन्निकटन प्राप्त कर सकते हैं, और यह विचार आधार है अर्नोल्डी पुनरावृत्ति।<ref name=Trefethen />  वैकल्पिक रूप से, महत्वपूर्ण [[क्यूआर एल्गोरिदम]] भी एक शक्ति पद्धति के सूक्ष्म परिवर्तन पर आधारित है।<ref name=Trefethen />
यह [[अनुक्रम]] [[लगभग हमेशा]] एक आइगेनवेक्टर में अभिसरण करेगा जो कि सबसे बड़ी परिमाण के आइगेनवैल्यू के अनुरूप है, बशर्ते कि {{math|'''v'''}} में आइगेनवेक्टर के आधार पर इस आइगेनवेक्टर का एक गैर-शून्य घटक है (और यह भी प्रदान किया गया है कि सबसे बड़ी परिमाण का केवल एक आइगेनवैल्यूहै)। यह सरल कलन विधि कुछ व्यावहारिक अनुप्रयोगों में उपयोगी है; उदाहरण के लिए, [[Index.php?title=गूगल|गूगल]] अपने खोज इंजन में दस्तावेज़ों के [[ पृष्ठ रैंक ]] की गणना करने के लिए इसका उपयोग करता है।<ref>[[Ilse Ipsen|Ipsen, Ilse]], and Rebecca M. Wills, ''[https://www4.ncsu.edu/~ipsen/ps/slides_imacs.pdf Analysis and Computation of Google's PageRank]'', 7th IMACS International Symposium on Iterative Methods in Scientific Computing, Fields Institute, Toronto, Canada, 5–8 May 2005.</ref> साथ ही, कई अधिक परिष्कृत कलन विधि के लिए पावर विधि शुरुआती बिंदु है। उदाहरण के लिए, अनुक्रम में न केवल अंतिम सदिश को रखते हुए, बल्कि क्रम में सभी सदिशों के रैखिक फैलाव को देखते हुए, आइगेनवेक्टर के लिए एक बेहतर (तेजी से अभिसरण) सन्निकटन प्राप्त कर सकते हैं, और यह विचार आधार है अर्नोल्डी पुनरावृत्ति।<ref name=Trefethen />  वैकल्पिक रूप से, महत्वपूर्ण [[क्यूआर एल्गोरिदम|क्यूआर कलन विधि]] भी एक शक्ति पद्धति के सूक्ष्म परिवर्तन पर आधारित है।<ref name=Trefethen />




=== आइगेनवेक्टरों की संख्यात्मक गणना ===
=== आइगेनवेक्टरों की संख्यात्मक गणना ===


एक बार आइगेनवेल्यूज़ ​​की गणना हो जाने के बाद, आइगेनवेक्टर की गणना समीकरण को हल करके की जा सकती है
एक बार आइगेनवेल्यूज़ ​​की गणना हो जाने के बाद, आइगेनवेक्टर की गणना समीकरण को हल करके की जा सकती है:
:<math>\left(\mathbf{A} - \lambda_i \mathbf{I}\right)\mathbf{v}_{i,j} = \mathbf{0} </math>
:<math>\left(\mathbf{A} - \lambda_i \mathbf{I}\right)\mathbf{v}_{i,j} = \mathbf{0} </math>
गॉसियन विलोपन या [[रैखिक समीकरणों की प्रणाली]] का उपयोग करना # रैखिक समीकरणों की प्रणाली को हल करने के लिए एक रैखिक प्रणाली को हल करना।
गॉसियन विलोपन या [[रैखिक समीकरणों की प्रणाली]] का उपयोग करना # रैखिक समीकरणों की प्रणाली को हल करने के लिए एक रैखिक प्रणाली को हल करना है।


हालांकि, व्यावहारिक रूप से बड़े पैमाने पर ईजेनवैल्यू विधियों में, आइगेनवेक्टरों की गणना आमतौर पर अन्य तरीकों से की जाती है, जैसे कि ईजेनवैल्यू संगणना का उपोत्पाद। [[शक्ति पुनरावृत्ति]] में, उदाहरण के लिए, eigenvector वास्तव में आइगेनवैल्यू से पहले गणना की जाती है (जो आमतौर पर eigenvector के Rayleigh भागफल द्वारा गणना की जाती है)।<ref name=Trefethen />  हर्मिटियन आव्यूह (या किसी सामान्य आव्यूह) के लिए क्यूआर एल्गोरिदम में, ऑर्थोनॉर्मल आइगेनवेक्टरों को एक उत्पाद के रूप में प्राप्त किया जाता है {{math|'''Q'''}} एल्गोरिथम के चरणों से मैट्रिसेस।<ref name=Trefethen />  (अधिक सामान्य मैट्रिसेस के लिए, क्यूआर एल्गोरिदम पहले [[शूर अपघटन]] उत्पन्न करता है, जिससे आइगेनवेक्टरों को [[backsubstation]] प्रक्रिया द्वारा प्राप्त किया जा सकता है।<ref>{{Cite book|url=https://books.google.com/books?id=YVpyyi1M7vUC |publisher=Springer|chapter= section 5.8.2|title=संख्यात्मक गणित|pages=15|first1=Alfio |last1=Quarteroni |first2=Riccardo |last2=Sacco |first3=Fausto |last3=Saleri |isbn=978-0-387-98959-4|year=2000}}</ref>) हर्मिटियन आव्यूह के लिए, [[विभाजित और जीत eigenvalue एल्गोरिथ्म|विभाजित और जीत आइगेनवैल्यू एल्गोरिथ्म]] क्यूआर एल्गोरिदम की तुलना में अधिक कुशल है यदि आइगेनवेक्टर और ईजेनवैल्यू दोनों वांछित हैं।<ref name=Trefethen />
हालांकि, व्यावहारिक रूप से बड़े पैमाने पर आइगेनवैल्यू विधियों में, आइगेनवेक्टरों की गणना आमतौर पर अन्य तरीकों से की जाती है, जैसे कि आइगेनवैल्यू संगणना का उपोत्पाद। [[शक्ति पुनरावृत्ति]] में, उदाहरण के लिए, आइगेनवेक्टर वास्तव में आइगेनवैल्यू से पहले गणना की जाती है (जो आमतौर पर आइगेनवेक्टर के रैले भागफल द्वारा गणना की जाती है)।<ref name=Trefethen />  हर्मिटियन आव्यूह (या किसी सामान्य आव्यूह) के लिए क्यूआर कलन विधि में, प्रसामान्य लांबिक विश्लेषण आइगेनवेक्टरों को एक उत्पाद के रूप में प्राप्त किया जाता है {{math|'''Q'''}} कलन विधि के चरणों से आव्यूह<ref name=Trefethen />  (अधिक सामान्य आव्यूह के लिए, क्यूआर कलन विधि पहले [[शूर अपघटन]] उत्पन्न करता है, जिससे आइगेनवेक्टरों को [[Index.php?title=बैकसबस्टेशन|बैकसबस्टेशन]] प्रक्रिया द्वारा प्राप्त किया जा सकता है।<ref>{{Cite book|url=https://books.google.com/books?id=YVpyyi1M7vUC |publisher=Springer|chapter= section 5.8.2|title=संख्यात्मक गणित|pages=15|first1=Alfio |last1=Quarteroni |first2=Riccardo |last2=Sacco |first3=Fausto |last3=Saleri |isbn=978-0-387-98959-4|year=2000}}</ref>) हर्मिटियन आव्यूह के लिए, [[विभाजित और जीत eigenvalue एल्गोरिथ्म|विभाजित और जीत आइगेनवैल्यू कलन विधि]] क्यूआर कलन विधि की तुलना में अधिक कुशल है यदि आइगेनवेक्टर और आइगेनवैल्यू दोनों वांछित हैं।<ref name=Trefethen />




== अतिरिक्त विषय ==
== अतिरिक्त विषय ==


=== सामान्यीकृत ईजेनस्पेस ===
=== सामान्यीकृत आइगेनस्पेस ===
याद रखें कि एक ईगेनवैल्यू की ज्यामितीय बहुलता को संबद्ध ईजेनस्पेस के आयाम के रूप में वर्णित किया जा सकता है, [[कर्नेल (रैखिक बीजगणित)]] {{math|''λ'''''I''' − '''A'''}}. बीजगणितीय बहुलता को एक आयाम के रूप में भी माना जा सकता है: यह संबंधित [[सामान्यीकृत आइगेनस्पेस]] (प्रथम भाव) का आयाम है, जो आव्यूह का नलस्पेस है {{math|(''λ'''''I''' − '''A''')<sup>''k''</sup>}} किसी भी पर्याप्त बड़े के लिए {{mvar|k}}. यही है, यह सामान्यीकृत आइगेनवेक्टर (प्रथम अर्थ) का स्थान है, जहां एक सामान्यीकृत eigenvector कोई वेक्टर होता है जो अंततः 0 हो जाता है {{math|''λ'''''I''' − '''A'''}} उस पर क्रमिक रूप से पर्याप्त बार लागू होता है। कोई भी eigenvector एक सामान्यीकृत eigenvector है, और इसलिए प्रत्येक eigenspace संबद्ध सामान्यीकृत eigenspace में समाहित है। यह एक आसान प्रमाण प्रदान करता है कि ज्यामितीय बहुलता हमेशा बीजगणितीय बहुलता से कम या उसके बराबर होती है।
याद रखें कि एक आइगेनवैल्यू की ज्यामितीय बहुलता को संबद्ध आइगेनस्पेस के आयाम के रूप में वर्णित किया जा सकता है, [[कर्नेल (रैखिक बीजगणित)]] {{math|''λ'''''I''' − '''A'''}}. बीजगणितीय बहुलता को एक आयाम के रूप में भी माना जा सकता है: यह संबंधित [[सामान्यीकृत आइगेनस्पेस]] (प्रथम भाव) का आयाम है, जो आव्यूह का नलस्पेस है {{math|(''λ'''''I''' − '''A''')<sup>''k''</sup>}} किसी भी पर्याप्त बड़े के लिए {{mvar|k}}. यही है, यह सामान्यीकृत आइगेनवेक्टर (प्रथम अर्थ) का स्थान है, जहां एक सामान्यीकृत आइगेनवेक्टर कोई वेक्टर होता है जो अंततः 0 हो जाता है {{math|''λ'''''I''' − '''A'''}} उस पर क्रमिक रूप से पर्याप्त बार लागू होता है। कोई भी आइगेनवेक्टर एक सामान्यीकृत आइगेनवेक्टर है, और इसलिए प्रत्येक आइगेनस्पेस संबद्ध सामान्यीकृत आइगेनस्पेस में समाहित है। यह एक आसान प्रमाण प्रदान करता है कि ज्यामितीय बहुलता हमेशा बीजगणितीय बहुलता से कम या उसके बराबर होती है।


इस प्रयोग को नीचे वर्णित सामान्यीकृत ईगेनवैल्यू निर्मेय के साथ भ्रमित नहीं होना चाहिए।
इस प्रयोग को नीचे वर्णित सामान्यीकृत आइगेनवैल्यू निर्मेय के साथ भ्रमित नहीं होना चाहिए।


=== संयुग्मी आइजनवेक्टर ===
=== संयुग्मी आइजनवेक्टर ===
एक संयुग्म eigenvector या conjugate eigenvector एक सदिश है जो इसके संयुग्म के एक स्केलर गुणक में परिवर्तन के बाद भेजा जाता है, जहां स्केलर को रैखिक परिवर्तन के संयुग्मित आइगेनवैल्यू या शंकुवायु कहा जाता है। कोनिजेनवेक्टर और कोनिजेनवैल्यू अनिवार्य रूप से नियमित आइगेनवेक्टर और ईजेनवैल्यू के रूप में समान जानकारी और अर्थ का प्रतिनिधित्व करते हैं, लेकिन तब उत्पन्न होते हैं जब एक वैकल्पिक समन्वय प्रणाली का उपयोग किया जाता है। संगत समीकरण है
एक संयुग्म आइगेनवेक्टर या संयुग्म आइगेनवेक्टर एक सदिश है जो इसके संयुग्म के एक स्केलर गुणक में परिवर्तन के बाद भेजा जाता है, जहां स्केलर को रैखिक परिवर्तन के संयुग्मित आइगेनवैल्यू या शंकुवायु कहा जाता है। कोनिजेनवेक्टर और कोनिजेनवैल्यू अनिवार्य रूप से नियमित आइगेनवेक्टर और आइगेनवैल्यू के रूप में समान जानकारी और अर्थ का प्रतिनिधित्व करते हैं, लेकिन तब उत्पन्न होते हैं जब एक वैकल्पिक समन्वय प्रणाली का उपयोग किया जाता है। संगत समीकरण है:
: <math>\mathbf{A}\mathbf{v} = \lambda \mathbf{v}^*.</math>
: <math>\mathbf{A}\mathbf{v} = \lambda \mathbf{v}^*.</math>
उदाहरण के लिए, सुसंगत विद्युत चुम्बकीय प्रकीर्णन सिद्धांत में, रैखिक परिवर्तन {{math|'''A'''}} प्रकीर्णन वस्तु द्वारा की गई क्रिया का प्रतिनिधित्व करता है, और आइगेनवेक्टर विद्युत चुम्बकीय तरंग के ध्रुवीकरण राज्यों का प्रतिनिधित्व करते हैं। [[प्रकाशिकी]] में, समन्वय प्रणाली को तरंग के दृष्टिकोण से परिभाषित किया जाता है, जिसे [[फॉरवर्ड स्कैटरिंग एलाइनमेंट]] (FSA) के रूप में जाना जाता है, और एक नियमित आइगेनवैल्यू समीकरण को जन्म देता है, जबकि [[राडार]] में, समन्वय प्रणाली को रडार के दृष्टिकोण से परिभाषित किया जाता है, जिसे बैक के रूप में जाना जाता [[बैक स्कैटरिंग एलाइनमेंट]] (BSA), और एक कोनिगेनवैल्यू समीकरण को जन्म देता है।
उदाहरण के लिए, सुसंगत विद्युत चुम्बकीय प्रकीर्णन सिद्धांत में, रैखिक परिवर्तन {{math|'''A'''}} प्रकीर्णन वस्तु द्वारा की गई क्रिया का प्रतिनिधित्व करता है, और आइगेनवेक्टर विद्युत चुम्बकीय तरंग के ध्रुवीकरण राज्यों का प्रतिनिधित्व करते हैं। [[प्रकाशिकी]] में, समन्वय प्रणाली को तरंग के दृष्टिकोण से परिभाषित किया जाता है, जिसे [[फॉरवर्ड स्कैटरिंग एलाइनमेंट]] (FSA) के रूप में जाना जाता है, और एक नियमित आइगेनवैल्यू समीकरण को जन्म देता है, जबकि [[राडार]] में, समन्वय प्रणाली को रडार के दृष्टिकोण से परिभाषित किया जाता है, जिसे बैक के रूप में जाना जाता [[बैक स्कैटरिंग एलाइनमेंट]] (BSA), और एक कोनिगेनवैल्यू समीकरण को जन्म देता है।
Line 246: Line 244:
एक सामान्यीकृत आइगेनवैल्यू निर्मेय (द्वितीय अर्थ) एक (अशून्य) वेक्टर खोजने की निर्मेय है {{math|'''v'''}} जो पालन करता है
एक सामान्यीकृत आइगेनवैल्यू निर्मेय (द्वितीय अर्थ) एक (अशून्य) वेक्टर खोजने की निर्मेय है {{math|'''v'''}} जो पालन करता है
: <math> \mathbf{A}\mathbf{v} = \lambda \mathbf{B} \mathbf{v}</math>
: <math> \mathbf{A}\mathbf{v} = \lambda \mathbf{B} \mathbf{v}</math>
कहाँ {{math|'''A'''}} और {{math|'''B'''}} आव्यूह हैं। अगर {{math|'''v'''}} कुछ के साथ इस समीकरण का पालन करता है {{mvar|λ}}, फिर हम कॉल करते हैं {{math|'''v'''}} का सामान्यीकृत आइगेनवेक्टर {{math|'''A'''}} और {{math|'''B'''}} (दूसरे अर्थ में), और {{mvar|λ}} का सामान्यीकृत आइगेनवैल्यू कहा जाता है {{math|'''A'''}} और {{math|'''B'''}} (दूसरे अर्थ में) जो सामान्यीकृत आइगेनवेक्टर से मेल खाता है {{math|'''v'''}}. के संभावित मान {{mvar|λ}} को निम्नलिखित समीकरण का पालन करना चाहिए
जहाँ {{math|'''A'''}} और {{math|'''B'''}} आव्यूह हैं। अगर {{math|'''v'''}} कुछ के साथ इस समीकरण का पालन करता है {{mvar|λ}}, फिर हम कॉल करते हैं {{math|'''v'''}} का सामान्यीकृत आइगेनवेक्टर {{math|'''A'''}} और {{math|'''B'''}} (दूसरे अर्थ में), और {{mvar|λ}} का सामान्यीकृत आइगेनवैल्यू कहा जाता है {{math|'''A'''}} और {{math|'''B'''}} (दूसरे अर्थ में) जो सामान्यीकृत आइगेनवेक्टर से मेल खाता है {{math|'''v'''}}. के संभावित मान {{mvar|λ}} को निम्नलिखित समीकरण का पालन करना चाहिए:
:<math>\det(\mathbf{A} - \lambda \mathbf{B})=0. </math>
:<math>\det(\mathbf{A} - \lambda \mathbf{B})=0. </math>
अगर {{math|''n''}} रैखिक रूप से स्वतंत्र वैक्टर {{math|{'''v'''<sub>1</sub>, …, '''v'''<sub>''n''</sub>}<nowiki/>}} पाया जा सकता है, जैसे कि प्रत्येक के लिए {{math|''i'' ∈ {1, …, ''n''}<nowiki/>}}, {{math|1='''Av'''<sub>''i''</sub> = ''λ<sub>i</sub>'''''Bv'''<sub>''i''</sub>}}, फिर हम मैट्रिसेस को परिभाषित करते हैं {{math|'''P'''}} और {{math|'''D'''}} ऐसा है कि
अगर {{math|''n''}} रैखिक रूप से स्वतंत्र वैक्टर {{math|{'''v'''<sub>1</sub>, …, '''v'''<sub>''n''</sub>}<nowiki/>}} पाया जा सकता है, जैसे कि प्रत्येक के लिए {{math|''i'' ∈ {1, …, ''n''}<nowiki/>}}, {{math|1='''Av'''<sub>''i''</sub> = ''λ<sub>i</sub>'''''Bv'''<sub>''i''</sub>}}, फिर हम आव्यूह को परिभाषित करते हैं {{math|'''P'''}} और {{math|'''D'''}} ऐसा है कि
:<math>P = \begin{bmatrix}
:<math>P = \begin{bmatrix}
     | & & | \\
     | & & | \\
Line 290: Line 288:
और तबसे {{math|'''P'''}} व्युत्क्रमणीय है, तो हम उपपत्ति को समाप्त करते हुए समीकरण को दाईं ओर से इसके व्युत्क्रम से गुणा करते हैं।
और तबसे {{math|'''P'''}} व्युत्क्रमणीय है, तो हम उपपत्ति को समाप्त करते हुए समीकरण को दाईं ओर से इसके व्युत्क्रम से गुणा करते हैं।


फॉर्म के आव्यूह का सेट {{math|'''A''' − ''λ'''''B'''}}, कहाँ {{mvar|λ}} एक सम्मिश्र संख्या है, जिसे पेंसिल कहा जाता है; [[मैट्रिक्स पेंसिल|आव्यूह पेंसिल]] शब्द जोड़ी को भी संदर्भित कर सकता है {{math|('''A''', '''B''')}} आव्यूह का।<ref name=Bai-GHEP>{{cite book|editor1-first=Z. |editor1-last=Bai |editor2-link=James Demmel|editor2-first=J. |editor2-last=Demmel |editor3-first=J. |editor3-last=Dongarra |editor4-first=A. |editor4-last=Ruhe |editor5-first=H. |editor5-last=Van Der Vorst |title=Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide|publisher=SIAM|location=Philadelphia|year= 2000|url=https://cs.utk.edu/~dongarra/etemplates/node156.html| chapter=Generalized Hermitian Eigenvalue Problems|isbn= 978-0-89871-471-5}}</ref>
फॉर्म के आव्यूह का सेट {{math|'''A''' − ''λ'''''B'''}}, जहाँ {{mvar|λ}} एक सम्मिश्र संख्या है, जिसे "पेंसिल" कहा जाता है; "[[मैट्रिक्स पेंसिल|आव्यूह पेंसिल]]" शब्द जोड़ी को भी संदर्भित कर सकता है {{math|('''A''', '''B''')}} आव्यूह का।<ref name=Bai-GHEP>{{cite book|editor1-first=Z. |editor1-last=Bai |editor2-link=James Demmel|editor2-first=J. |editor2-last=Demmel |editor3-first=J. |editor3-last=Dongarra |editor4-first=A. |editor4-last=Ruhe |editor5-first=H. |editor5-last=Van Der Vorst |title=Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide|publisher=SIAM|location=Philadelphia|year= 2000|url=https://cs.utk.edu/~dongarra/etemplates/node156.html| chapter=Generalized Hermitian Eigenvalue Problems|isbn= 978-0-89871-471-5}}</ref>
अगर {{math|'''B'''}} व्युत्क्रम है, तो मूल निर्मेय के रूप में लिखा जा सकता है
अगर {{math|'''B'''}} व्युत्क्रम है, तो मूल निर्मेय के रूप में लिखा जा सकता है:
: <math>\mathbf{B}^{-1}\mathbf{A}\mathbf{v} = \lambda \mathbf{v}</math>
: <math>\mathbf{B}^{-1}\mathbf{A}\mathbf{v} = \lambda \mathbf{v}</math>
जो एक मानक आइगेनवैल्यू निर्मेय है। हालांकि, ज्यादातर स्थितियों में व्युत्क्रम प्रदर्शन नहीं करना बेहतर होता है, बल्कि मूल रूप से बताई गई सामान्यीकृत ईगेनवैल्यू निर्मेय को हल करना बेहतर होता है। यह विशेष रूप से महत्वपूर्ण है अगर {{math|'''A'''}} और {{math|'''B'''}} [[हर्मिटियन मेट्रिसेस|हर्मिटियन आव्यूह]] हैं, क्योंकि इस मामले में {{math|'''B'''<sup>−1</sup>'''A'''}} आमतौर पर हर्मिटियन नहीं है और समाधान के महत्वपूर्ण गुण अब स्पष्ट नहीं हैं।
जो एक मानक आइगेनवैल्यू निर्मेय है। हालांकि, ज्यादातर स्थितियों में व्युत्क्रम प्रदर्शन नहीं करना बेहतर होता है, बल्कि मूल रूप से बताई गई सामान्यीकृत आइगेनवैल्यू निर्मेय को हल करना बेहतर होता है। यह विशेष रूप से महत्वपूर्ण है अगर {{math|'''A'''}} और {{math|'''B'''}} [[हर्मिटियन मेट्रिसेस|हर्मिटियन आव्यूह]] हैं, क्योंकि इस मामले में {{math|'''B'''<sup>−1</sup>'''A'''}} आमतौर पर हर्मिटियन नहीं है और समाधान के महत्वपूर्ण गुण अब स्पष्ट नहीं हैं।


अगर {{math|'''A'''}} और {{math|'''B'''}} दोनों सममित या हर्मिटियन हैं, और {{math|'''B'''}} भी एक [[सकारात्मक-निश्चित मैट्रिक्स|सकारात्मक-निश्चित आव्यूह]] है, आइगेनवेल्यूज़ {{math|''λ<sub>i</sub>''}} वास्तविक और आइगेनवेक्टर हैं {{math|'''v'''<sub>1</sub>}} और {{math|'''v'''<sub>2</sub>}} अलग-अलग आइगेनवेल्यूज़ ​​​​के साथ हैं {{math|'''B'''}}-ऑर्थोगोनल ({{math|1='''v'''<sub>1</sub><sup>*</sup>'''Bv'''<sub>2</sub> = 0}}).<ref>{{cite book|last=Parlett|first=Beresford N.|title=सममित eigenvalue समस्या|date=1998|publisher=Society for Industrial and Applied Mathematics|location=Philadelphia|isbn=978-0-89871-402-9|page=345|url=https://epubs.siam.org/doi/book/10.1137/1.9781611971163|edition=Reprint.|doi=10.1137/1.9781611971163}}</ref> इस मामले में, आइगेनवेक्टर को चुना जा सकता है ताकि आव्यूह {{math|'''P'''}} ऊपर परिभाषित संतुष्ट करता है
अगर {{math|'''A'''}} और {{math|'''B'''}} दोनों सममित या हर्मिटियन हैं, और {{math|'''B'''}} भी एक [[सकारात्मक-निश्चित मैट्रिक्स|सकारात्मक-निश्चित आव्यूह]] है, आइगेनवेल्यूज़ {{math|''λ<sub>i</sub>''}} वास्तविक और आइगेनवेक्टर हैं {{math|'''v'''<sub>1</sub>}} और {{math|'''v'''<sub>2</sub>}} अलग-अलग आइगेनवेल्यूज़ ​​​​के साथ हैं {{math|'''B'''}}-लांबिक ({{math|1='''v'''<sub>1</sub><sup>*</sup>'''Bv'''<sub>2</sub> = 0}}).<ref>{{cite book|last=Parlett|first=Beresford N.|title=सममित eigenvalue समस्या|date=1998|publisher=Society for Industrial and Applied Mathematics|location=Philadelphia|isbn=978-0-89871-402-9|page=345|url=https://epubs.siam.org/doi/book/10.1137/1.9781611971163|edition=Reprint.|doi=10.1137/1.9781611971163}}</ref> इस मामले में, आइगेनवेक्टर को चुना जा सकता है ताकि आव्यूह {{math|'''P'''}} ऊपर परिभाषित संतुष्ट करता है:


:<math>\mathbf{P}^* \mathbf B \mathbf{P} = \mathbf{I}</math> या  <math>\mathbf{P}\mathbf{P}^*\mathbf B  = \mathbf{I}</math>,
:<math>\mathbf{P}^* \mathbf B \mathbf{P} = \mathbf{I}</math> या  <math>\mathbf{P}\mathbf{P}^*\mathbf B  = \mathbf{I}</math>,
Line 307: Line 305:
* [[गृहस्थ परिवर्तन]]
* [[गृहस्थ परिवर्तन]]
* [[जॉर्डन सामान्य रूप]]
* [[जॉर्डन सामान्य रूप]]
* [[मैट्रिसेस की सूची]]
* [[मैट्रिसेस की सूची|आव्यूह की सूची]]
* आव्यूह अपघटन
* आव्यूह अपघटन
*[[विलक्षण मान अपघटन]]
*[[विलक्षण मान अपघटन]]

Revision as of 13:38, 26 May 2023

रैखिक बीजगणित में, आइगेनडीकम्पोज़िशन एक आव्यूह का एक विहित रूप में आव्यूह गुणनखंड है, जिससे आव्यूह को इसके आइगेनवेल्यूज़ ​​​​और आइगेनवेक्टर के संदर्भ में दर्शाया जाता है। इस तरह से केवल विकर्ण आव्यूह को कारक बनाया जा सकता है। जब आव्यूह का गुणनखंड एक सामान्य आव्यूह या वास्तविक सममित आव्यूह होता है, तो अपघटन को वर्णक्रमीय अपघटन कहा जाता है, जिसे वर्णक्रमीय प्रमेय से प्राप्त किया जाता है।

आव्यूह आइगेनवेक्टर और आइगेनवेल्यूज़ ​​​​का मौलिक सिद्धांत

आयाम N का A (अशून्य) सदिश v एक वर्ग N × N आव्यूह A का एक आइजनवेक्टर है यदि यह प्रपत्र के एक रेखीय समीकरण को संतुष्ट करता है:

कुछ अदिश के लिए λ. तब λ को संगत आइगेन मान कहा जाता है v. ज्यामितीय रूप से बोलते हुए, A के आइगेनवेक्टर वे वैक्टर हैं जो A केवल बढ़ता या सिकुड़ता है, और जिस राशि से वे बढ़ते/सिकुड़ते हैं वह आइगेनवेल्यू है। उपरोक्त समीकरण को आइगेनवैल्यू समीकरण या आइगेनवैल्यू निर्मेय कहा जाता है।

यह आइगेनवेल्यूज़ ​​के लिए एक समीकरण देता है:

हम p(λ) को अभिलाक्षणिक बहुपद कहते हैं, और समीकरण, जिसे अभिलाक्षणिक समीकरण कहा जाता है, अज्ञात λ में एक Nवीं कोटि का बहुपद समीकरण है। इस समीकरण के Nλ अलग-अलग समाधान होंगे, जहां 1 ≤ Nλ ≤ N. समाधानों का सेट, यानी आइगेनवैल्यू, A का स्पेक्ट्रम कहलाता है।[1][2][3]

यदि अदिशों का क्षेत्र बीजगणितीय रूप से बंद है, तो हम p को गुणनखंडित कर सकते हैं:

पूर्णांक ni को आइगेनवैल्यू की बीजगणितीय बहुलता कहा जाता है λi. बीजगणितीय गुणन का योग है N:

प्रत्येक आइगेनवैल्यू के लिए λi, हमारे पास एक विशिष्ट आइगेनवैल्यू समीकरण है

जहाँ 1 ≤ mini प्रत्येक आइगेनवैल्यू समीकरण के लिए रैखिक रूप से स्वतंत्र समाधान के रैखिक संयोजन mi समाधान (एक को छोड़कर जो शून्य वेक्टर देता है) आइगेनवैल्यू से जुड़े आइगेनवेक्टर हैं λi. पूर्णांक mi की ज्यामितीय बहुलता कहलाती है λi. बीजगणितीय बहुलता को ध्यान में रखना महत्वपूर्ण है ni और ज्यामितीय बहुलता mi बराबर हो भी सकता है और नहीं भी, लेकिन हमारे पास हमेशा होता है mini. सबसे सरल मामला नि:संदेह है जब mi = ni = 1. रैखिक रूप से स्वतंत्र आइगेनवेक्टरों की कुल संख्या, Nv, की गणना ज्यामितीय गुणकों के योग द्वारा की जा सकती है

आइगेनवेक्टर को दोहरा सूचकांक का उपयोग करके आइगेनवेल्यूज़ ​​​​द्वारा अनुक्रमित किया जा सकता है vij आइगेनवेल्यू , jवें आइगेनवेक्टर के लिए iवां आइगेनवैल्यू साथ। आइगेनवेक्टरों कोk = 1, 2, ..., Nv. के साथ एकल सूचकांक vk, के सरल अंकन का उपयोग करके भी अनुक्रमित किया जा सकता है।

एक आव्यूह का आइगेनडीकम्पोज़िशन

मान लीजिए A एक वर्ग n × n मैट्रिक्स है जिसमें n रैखिक रूप से स्वतंत्र आइगेनवेक्टर qi (जहाँ i = 1, ..., n) है। तब A को गुणनखंडित किया जा सकता है

जहाँ Q वर्ग है n × n आव्यूह जिसका iवाँ स्तंभ आइगेनवेक्टर है qi का A, और Λ विकर्ण आव्यूह है जिसके विकर्ण तत्व संगत आइगेनवेल्यूज़ ​​​​हैं, Λii = λi. ध्यान दें कि इस तरह से केवल विकर्ण आव्यूह को कारक बनाया जा सकता है। उदाहरण के लिए, त्रुटिपूर्ण मैट्रिक्स (जो एक कतरनी आव्यूह है) को विकर्ण नहीं किया जा सकता। n} आइगेनवेक्टर qi आमतौर पर सामान्यीकृत होते हैं, लेकिन उन्हें होने की आवश्यकता नहीं होती है। का एक गैर-सामान्यीकृत सेट n आइगेनवेक्टर, vi के कॉलम के रूप में भी इस्तेमाल किया जा सकता है Q. इसे इस बात से समझा जा सकता है कि आइगेनवेक्टरों का परिमाण Q की उपस्थिति से अपघटन में रद्द हो जाता है Q−1. यदि आइगेनवेल्यूज़ ​​​​में से एक λi में एक से अधिक रैखिक रूप से स्वतंत्र आइगेनवेक्टर हैं (अर्थात, की ज्यामितीय बहुलता λi 1 से अधिक है), तो इस आइगेनवैल्यू के लिए ये आइगेनवेक्टर λi पारस्परिक रूप से लांबिक होने के लिए चुना जा सकता है; हालांकि, अगर दो आइगेनवेक्टर दो अलग-अलग आइगेनवैल्यू से संबंधित हैं, तो उनके लिए एक दूसरे के लिए लांबिक होना असंभव हो सकता है (नीचे उदाहरण देखें)। एक विशेष मामला यह है कि अगर A एक सामान्य आव्यूह है, फिर स्पेक्ट्रल प्रमेय द्वारा, A को प्रसामान्य लांबिक विश्लेषण आधार {qi} में विकर्ण करना हमेशा संभव होता है।

अपघटन आइगेनवेक्टर की मौलिक संपत्ति से प्राप्त किया जा सकता है:

रैखिक रूप से स्वतंत्र आइगेनवेक्टर qi अशून्य आइगेनवेल्यूज़ ​​​​के साथ सभी संभावित उत्पादों के लिए एक आधार (जरूरी नहीं कि orthonormal) बनाते हैं Ax, के लिए xCn, जो संबंधित आव्यूह परिवर्तन की छवि (गणित) (या किसी फलन की श्रेणी) के समान है, और आव्यूह का स्तंभ स्थान भी है A. रैखिक रूप से स्वतंत्र आइगेनवेक्टरों की संख्या qi गैर शून्य आइगेनवेल्यूज़ ​​​​के साथ आव्यूह के रैंक (रैखिक बीजगणित) के बराबर है A, और संबंधित आव्यूह परिवर्तन की छवि (या श्रेणी) के आयाम के साथ-साथ इसके स्तंभ स्थान भी है।

रैखिक रूप से स्वतंत्र आइगेनवेक्टर qi आव्यूह परिवर्तन के शून्य स्थान (कर्नेल के रूप में भी जाना जाता है) के लिए शून्य फॉर्म के आधार के साथ (जिसे प्रसामान्य लांबिक विश्लेषण चुना जा सकता है) A है।

उदाहरण

2 × 2 वास्तविक आव्यूह A

एक व्‍युत्‍क्रमणीयआव्यूह के गुणन के माध्यम से एक विकर्ण आव्यूह में विघटित हो सकता है B

तब

कुछ वास्तविक विकर्ण आव्यूह के लिए .

समीकरण के दोनों पक्षों को बायीं ओर से गुणा करने पर B:

उपरोक्त समीकरण को एक साथ दो समीकरणों में विघटित किया जा सकता है:

आइगेनवैल्यू का फैक्टरिंग करना x और y:

दे

यह हमें दो सदिश समीकरण देता है:

और एक सदिश समीकरण द्वारा प्रतिनिधित्व किया जा सकता है जिसमें दो समाधान शामिल हैं जैसे कि आइगेनवेल्यूज़:

जहाँ λ दो आइगेनवेल्यूज़ ​​​​का प्रतिनिधित्व करता है x और y, और u वैक्टर का प्रतिनिधित्व करता है a और b.

λu को बाएँ हाथ की ओर स्थानांतरित करना और u को फ़ैक्टर करना है

तब से B व्‍युत्‍क्रमणीय है, यह आवश्यक है कि u अशून्य है। इसलिए,

इस प्रकार

हमें आव्यूह के लिए आइगेनवेल्यूज़ ​​​​का समाधान दे रहा है A जैसा λ = 1 या λ = 3, और परिणामी विकर्ण आव्यूह के आइगेनडीकम्पोज़िशन से A इस प्रकार है .

समाधानों को वापस उपरोक्त समकालिक समीकरणों में लाना है:

समीकरणों को हल करना, हमारे पास है:

इस प्रकार आव्यूह B के आइगेनडीकम्पोज़िशन के लिए आवश्यक A है:

वह है:

आइगेनडीकम्पोज़िशन के माध्यम से आव्यूह व्युत्क्रम

अगर एक आव्यूह A को आइगेनडीकम्पोज किया जा सकता है और यदि इसका कोई आइगेनवेल्यूज़ ​​​​शून्य नहीं है, तो A व्युत्क्रम आव्यूह है और इसके व्युत्क्रम द्वारा दिया गया है:

अगर एक सममित आव्यूह है, क्योंकि के आइगेनवेक्टर से बनता है , इसलिए एक लांबिक आव्यूह होने की गारंटी है . इसके अलावा, क्योंकि Λ एक विकर्ण आव्यूह है, इसके व्युत्क्रम की गणना करना आसान है:


व्यावहारिक प्रभाव

जब, वास्तविक आंकड़े के एक आव्यूह पर आइगेनडीकम्पोज़िशन का उपयोग किया जाता है, तो व्युत्क्रम कार्य कम मान्य हो सकता है जब सभी आइगेनवेल्यूज़ ​​​​उपरोक्त रूप में अपरिवर्तित उपयोग किए जाते हैं। इसका कारण यह है कि जैसे-जैसे आइगेनवैल्यू अपेक्षाकृत छोटे होते जाते हैं, व्युत्क्रम में उनका योगदान बड़ा होता जाता है। शून्य के पास या माप प्रणाली के रव पर उन पर अनुचित प्रभाव पड़ेगा और व्युत्क्रम का उपयोग करके समाधान (पहचान) में बाधा आ सकती है।[4] दो न्यूनीकरण प्रस्तावित किए गए हैं: छोटे या शून्य आइगेनवेल्यूज़ ​​को छोटा करना, और इसके नीचे के लोगों के लिए सबसे कम विश्वसनीय आइगेनवैल्यू का विस्तार करना। टिकोनोव नियमितीकरण को एक सांख्यिकीय रूप से प्रेरित लेकिन पक्षपाती विधि के रूप में देखें, क्योंकि वे आइगेनवैल्यूज़ को अपवेल्लन करते हैं क्योंकि वे रव से प्रभावित हो जाते हैं।

पहली शमन विधि मूल आव्यूह के विरल नमूने के समान है, जो उन घटकों को हटाती है जिन्हें मूल्यवान नहीं माना जाता है। हालाँकि, यदि समाधान या पता लगाने की प्रक्रिया रव स्तर के पास है, तो ट्रंकटिंग उन घटकों को हटा सकती है जो वांछित समाधान को प्रभावित करते हैं।

दूसरा शमन आइगेनवैल्यू का विस्तार करता है ताकि कम मूल्यों का व्युत्क्रम पर बहुत कम प्रभाव पड़े, लेकिन फिर भी योगदान करते हैं, जैसे कि रव के निकट समाधान अभी भी मिलेंगे।

विश्वसनीय आइगेनवैल्यू यह मानते हुए पाया जा सकता है कि बेहद समान और कम मूल्य के आइगेनवेल्यूज़ ​​​​माप रव का एक अच्छा प्रतिनिधित्व है (जो कि अधिकांश प्रणालियों के लिए कम माना जाता है)।

यदि आइगेनवेल्यूज़ ​​​​मूल्य द्वारा श्रेणीबद्ध किए जाते हैं, तो विश्वसनीय आइगेनवैल्यू को सॉर्ट किए गए आइगेनवेल्यूज़ ​​​​केलाप्लास ऑपरेटर को कम करके पाया जा सकता है:[5]

जहां आइगेनवेल्यूज़ ​​a के साथ सब्सक्राइब किए गए हैं s सॉर्ट किए जाने को इंगित करने के लिए। न्यूनीकरण की स्थिति सबसे कम विश्वसनीय आइगेनवैल्यू है। माप प्रणालियों में, इस विश्वसनीय आइगेनवैल्यू का वर्गमूल सिस्टम के घटकों पर औसत रव है।

कार्यात्मक गणना

आइगेनडीकम्पोज़िशन आव्यूह की शक्ति श्रृंखला की बहुत आसान गणना के लिए अनुमति देता है। अगर f (x) द्वारा दिया गया है

तब हम उसे जानते हैं

क्योंकि Λ एक विकर्ण आव्यूह है, का कार्य करता है Λ की गणना करना बहुत आसान है:

के अप विकर्ण तत्व f (Λ) शून्य हैं; वह है, f (Λ) भी एक विकर्ण आव्यूह है। इसलिए गणना कर रहे हैं f (A) प्रत्येक आइगेनवेल्यूज़ ​​​​पर फलन की गणना करने के लिए कम हो जाता है।

इसी तरह की तकनीक आमतौर पर होलोमॉर्फिक फंक्शनल कैलकुलस के साथ अधिक काम करती है:

  1. आव्यूह व्युत्क्रम से आइगेनडीकम्पोज़िशन के माध्यम से। एक बार फिर, हम पाते हैं


उदाहरण

जो कार्यों के लिए उदाहरण हैं . आगे, आव्यूह घातीय है।

विशेष आव्यूह के लिए अपघटन

आव्यूह के महत्वपूर्ण वर्गों के सबसेट

जब A सामान्य या वास्तविक सममित आव्यूह है, अपघटन को वर्णक्रमीय अपघटन कहा जाता है, जो वर्णक्रमीय प्रमेय से प्राप्त होता है।

सामान्य आव्यूह

एक जटिल मान वर्ग आव्यूह A सामान्य है (अर्थ A*A = AA*, कहाँ A* संयुग्म संक्रमण है) अगर और केवल अगर इसे विघटित किया जा सकता है

जहाँ U एक एकात्मक आव्यूह है (अर्थ U* = U−1) और Λ = diag(λ1, ..., λn) एक विकर्ण आव्यूह है।[6] कॉलम यू1, ..., मेंn का U एक प्रसामान्य लांबिक विश्लेषण बनाते हैं और इसके आइगेनवेक्टर हैं A इसी आइगेनवेल्यूज़ ​​λ के साथ1, ..., एलn.

अगर A हर्मिटियन आव्यूह होने के लिए प्रतिबंधित है (A = A*), तब Λ में केवल वास्तविक मूल्यवान प्रविष्टियाँ हैं। अगर A तब एकात्मक आव्यूह तक ही सीमित है Λ अपने सभी मान जटिल इकाई वृत्त पर लेता है, अर्थात, |λi| = 1.

वास्तविक सममित आव्यूह

एक विशेष मामले के रूप में, प्रत्येक के लिए n × n वास्तविक सममित आव्यूह, आइगेनवेल्यूज़ ​​​​वास्तविक हैं और आइगेनवेक्टर को वास्तविक और प्रसामान्य लांबिक विश्लेषण चुना जा सकता है। इस प्रकार एक वास्तविक सममित आव्यूह A के रूप में विघटित किया जा सकता है

जहाँ Q एक लांबिक आव्यूह है जिसके कॉलम वास्तविक, प्रसामान्य लांबिक विश्लेषण आइगेनवेक्टर A हैं और Λ एक विकर्ण आव्यूह है जिसकी प्रविष्टियाँ आइगेनवेल्यूज़ ​​​​हैं A.[7]


उपयोगी तथ्य

आइगेनवेल्यूज़ के बारे में उपयोगी तथ्य

  • आइगेनवैल्यू का गुणनफल के निर्धारक A के बराबर है:
    ध्यान दें कि प्रत्येक आइगेनवैल्यू की घात ni, बीजगणितीय बहुलता तक बढ़ाया जाता है
  • आइगेनवैल्यू का योग के ट्रेस (रैखिक बीजगणित) A के बराबर है:
    ध्यान दें कि प्रत्येक आइगेनवैल्यू ni, बीजगणितीय बहुलता से गुणा किया जाता है।
  • यदि A के आइगेनमान λi हैं, और A व्युत्क्रमणीय है, तो A−1 के आइगेनमान केवल λi -1 है।
  • यदि A के आइगेनवैल्यू λi हैं, तो f (A) के आइगेनवैल्यू केवल f (λi) हैं, किसी भी होलोमोर्फिक फलन f के लिए है।

आइगेनवेक्टर के बारे में उपयोगी तथ्य

  • अगर A हर्मिटियन आव्यूह और पूर्ण-रैंक है, आइगेनवेक्टरों के आधार को पारस्परिक रूप से ओर्थोगोनल चुना जा सकता है। आइगेनवैल्यू वास्तविक हैं।
  • आइगेनवेक्टर A−1 के आइगेनवेक्टर A के समान हैं।
  • आइगेनवेक्टर को केवल गुणक स्थिरांक तक परिभाषित किया जाता है। यानी अगर Av = λv तब cv किसी भी अदिश के लिए एक आइगेनवेक्टर भी है c ≠ 0. विशेष रूप से, v और ev (किसी θ के लिए) भी आइगेनवेक्टर हैं।
  • पतित आइगेनवैल्यू (एक से अधिक आइगेनवेक्टर वाले आइगेनवैल्यू) के मामले में, आइगेनवेक्टरों को रैखिक परिवर्तन की एक अतिरिक्त स्वतंत्रता है, अर्थात, आइगेनवैल्यू साझा करने वाले आइगेनवेक्टरों का कोई भी रैखिक (प्रसामान्य लांबिक विश्लेषण) संयोजन (पतित उप-स्थान में) स्वयं एक आइगेनवेक्टर (उप-स्थान में) है।

आइगेनडीकंपोजीशन के बारे में उपयोगी तथ्य

  • A आइगेनडीकम्पोज किया जा सकता है अगर और केवल अगर रैखिक रूप से स्वतंत्र आइगेनवेक्टर की संख्या, Nv, एक आइगेनवेक्टर Nv = N के आयाम के बराबर है।
  • यदि अदिशों का क्षेत्र बीजगणितीय रूप से बंद है और यदि p(λ) की कोई पुनरावर्तित जड़ें नहीं हैं, अर्थात यदि तब A आइगेनडीकम्पोज हो सकता है।
  • कथन A आइगेनडीकम्पोज किया जा सकता है इसका मतलब यह नहीं है A का व्युत्क्रम होता है क्योंकि कुछ आइगेनवेल्यूज़ ​​​​शून्य हो सकते हैं, जो व्युत्क्रमणीय नहीं है।
  • कथन A का प्रतिलोम होने का अर्थ यह नहीं है कि A आइगेनडीकम्पोज हो सकता है। एक प्रति उदाहरण है , जो एक व्युत्क्रम दोषपूर्ण आव्यूह है।

आव्यूह व्युत्क्रम के बारे में उपयोगी तथ्य

  • A व्युत्क्रम जा सकता है अगर और केवल अगर सभी आइगेनवेल्यूज़ ​​​​अशून्य हैं:
  • अगर λi ≠ 0 और Nv = N, व्युत्क्रम द्वारा दिया गया है


संख्यात्मक संगणना

आइगेनवेल्यूज़ की संख्यात्मक गणना

मान लीजिए कि हम किसी दिए गए आव्यूह के आइगेनवेल्यूज़ ​​​​की गणना करना चाहते हैं। यदि आव्यूह छोटा है, तो हम विशेषता बहुपद का उपयोग करके प्रतीकात्मक रूप से उनकी गणना कर सकते हैं। हालांकि, बड़े आव्यूह के लिए यह अक्सर असंभव होता है, इस मामले में हमें एक संख्यात्मक विश्लेषण का उपयोग करना चाहिए।

व्यवहार में, बड़े आव्यूहों के आइगेनवैल्यू की गणना विशेषता बहुपद का उपयोग करके नहीं की जाती है। बहुपद की गणना करना अपने आप में महंगा हो जाता है, और उच्च-स्तरीय बहुपद की सटीक (प्रतीकात्मक) जड़ों की गणना करना और व्यक्त करना मुश्किल हो सकता है: एबेल-रफिनी प्रमेय का तात्पर्य है कि उच्च-डिग्री (5 या ऊपर) बहुपदों की जड़ें सामान्य रूप से नहीं हो सकती हैं। केवल nवें मूल का उपयोग करके व्यक्त किया जा सकता है। इसलिए, आइगेनवेक्टर और आइगेनवैल्यू खोजने के लिए सामान्य कलन विधि पुनरावृत्त हैं।

बहुपदों की अनुमानित जड़ों के लिए पुनरावृत्त संख्यात्मक कलन विधि मौजूद हैं, जैसे कि न्यूटन की विधि, लेकिन सामान्य तौर पर विशेषता बहुपद की गणना करना और फिर इन विधियों को लागू करना अव्यावहारिक है। एक कारण यह है कि विशेषता बहुपद के गुणांकों में छोटे राउंड-ऑफ त्रुटियां आइगेनवेल्यूज़ और आइगेनवेक्टरों में बड़ी त्रुटियां पैदा कर सकती हैं: मूल गुणांक का एक बहुत ही खराब शर्त वाला कार्य है।[8] एक सरल और सटीक पुनरावृत्ति विधि शक्ति विधि है: एक यादृच्छिक सदिश v चुना जाता है और इकाई सदिश के अनुक्रम की गणना की जाती है:

यह अनुक्रम लगभग हमेशा एक आइगेनवेक्टर में अभिसरण करेगा जो कि सबसे बड़ी परिमाण के आइगेनवैल्यू के अनुरूप है, बशर्ते कि v में आइगेनवेक्टर के आधार पर इस आइगेनवेक्टर का एक गैर-शून्य घटक है (और यह भी प्रदान किया गया है कि सबसे बड़ी परिमाण का केवल एक आइगेनवैल्यूहै)। यह सरल कलन विधि कुछ व्यावहारिक अनुप्रयोगों में उपयोगी है; उदाहरण के लिए, गूगल अपने खोज इंजन में दस्तावेज़ों के पृष्ठ रैंक की गणना करने के लिए इसका उपयोग करता है।[9] साथ ही, कई अधिक परिष्कृत कलन विधि के लिए पावर विधि शुरुआती बिंदु है। उदाहरण के लिए, अनुक्रम में न केवल अंतिम सदिश को रखते हुए, बल्कि क्रम में सभी सदिशों के रैखिक फैलाव को देखते हुए, आइगेनवेक्टर के लिए एक बेहतर (तेजी से अभिसरण) सन्निकटन प्राप्त कर सकते हैं, और यह विचार आधार है अर्नोल्डी पुनरावृत्ति।[8] वैकल्पिक रूप से, महत्वपूर्ण क्यूआर कलन विधि भी एक शक्ति पद्धति के सूक्ष्म परिवर्तन पर आधारित है।[8]


आइगेनवेक्टरों की संख्यात्मक गणना

एक बार आइगेनवेल्यूज़ ​​की गणना हो जाने के बाद, आइगेनवेक्टर की गणना समीकरण को हल करके की जा सकती है:

गॉसियन विलोपन या रैखिक समीकरणों की प्रणाली का उपयोग करना # रैखिक समीकरणों की प्रणाली को हल करने के लिए एक रैखिक प्रणाली को हल करना है।

हालांकि, व्यावहारिक रूप से बड़े पैमाने पर आइगेनवैल्यू विधियों में, आइगेनवेक्टरों की गणना आमतौर पर अन्य तरीकों से की जाती है, जैसे कि आइगेनवैल्यू संगणना का उपोत्पाद। शक्ति पुनरावृत्ति में, उदाहरण के लिए, आइगेनवेक्टर वास्तव में आइगेनवैल्यू से पहले गणना की जाती है (जो आमतौर पर आइगेनवेक्टर के रैले भागफल द्वारा गणना की जाती है)।[8] हर्मिटियन आव्यूह (या किसी सामान्य आव्यूह) के लिए क्यूआर कलन विधि में, प्रसामान्य लांबिक विश्लेषण आइगेनवेक्टरों को एक उत्पाद के रूप में प्राप्त किया जाता है Q कलन विधि के चरणों से आव्यूह[8] (अधिक सामान्य आव्यूह के लिए, क्यूआर कलन विधि पहले शूर अपघटन उत्पन्न करता है, जिससे आइगेनवेक्टरों को बैकसबस्टेशन प्रक्रिया द्वारा प्राप्त किया जा सकता है।[10]) हर्मिटियन आव्यूह के लिए, विभाजित और जीत आइगेनवैल्यू कलन विधि क्यूआर कलन विधि की तुलना में अधिक कुशल है यदि आइगेनवेक्टर और आइगेनवैल्यू दोनों वांछित हैं।[8]


अतिरिक्त विषय

सामान्यीकृत आइगेनस्पेस

याद रखें कि एक आइगेनवैल्यू की ज्यामितीय बहुलता को संबद्ध आइगेनस्पेस के आयाम के रूप में वर्णित किया जा सकता है, कर्नेल (रैखिक बीजगणित) λIA. बीजगणितीय बहुलता को एक आयाम के रूप में भी माना जा सकता है: यह संबंधित सामान्यीकृत आइगेनस्पेस (प्रथम भाव) का आयाम है, जो आव्यूह का नलस्पेस है (λIA)k किसी भी पर्याप्त बड़े के लिए k. यही है, यह सामान्यीकृत आइगेनवेक्टर (प्रथम अर्थ) का स्थान है, जहां एक सामान्यीकृत आइगेनवेक्टर कोई वेक्टर होता है जो अंततः 0 हो जाता है λIA उस पर क्रमिक रूप से पर्याप्त बार लागू होता है। कोई भी आइगेनवेक्टर एक सामान्यीकृत आइगेनवेक्टर है, और इसलिए प्रत्येक आइगेनस्पेस संबद्ध सामान्यीकृत आइगेनस्पेस में समाहित है। यह एक आसान प्रमाण प्रदान करता है कि ज्यामितीय बहुलता हमेशा बीजगणितीय बहुलता से कम या उसके बराबर होती है।

इस प्रयोग को नीचे वर्णित सामान्यीकृत आइगेनवैल्यू निर्मेय के साथ भ्रमित नहीं होना चाहिए।

संयुग्मी आइजनवेक्टर

एक संयुग्म आइगेनवेक्टर या संयुग्म आइगेनवेक्टर एक सदिश है जो इसके संयुग्म के एक स्केलर गुणक में परिवर्तन के बाद भेजा जाता है, जहां स्केलर को रैखिक परिवर्तन के संयुग्मित आइगेनवैल्यू या शंकुवायु कहा जाता है। कोनिजेनवेक्टर और कोनिजेनवैल्यू अनिवार्य रूप से नियमित आइगेनवेक्टर और आइगेनवैल्यू के रूप में समान जानकारी और अर्थ का प्रतिनिधित्व करते हैं, लेकिन तब उत्पन्न होते हैं जब एक वैकल्पिक समन्वय प्रणाली का उपयोग किया जाता है। संगत समीकरण है:

उदाहरण के लिए, सुसंगत विद्युत चुम्बकीय प्रकीर्णन सिद्धांत में, रैखिक परिवर्तन A प्रकीर्णन वस्तु द्वारा की गई क्रिया का प्रतिनिधित्व करता है, और आइगेनवेक्टर विद्युत चुम्बकीय तरंग के ध्रुवीकरण राज्यों का प्रतिनिधित्व करते हैं। प्रकाशिकी में, समन्वय प्रणाली को तरंग के दृष्टिकोण से परिभाषित किया जाता है, जिसे फॉरवर्ड स्कैटरिंग एलाइनमेंट (FSA) के रूप में जाना जाता है, और एक नियमित आइगेनवैल्यू समीकरण को जन्म देता है, जबकि राडार में, समन्वय प्रणाली को रडार के दृष्टिकोण से परिभाषित किया जाता है, जिसे बैक के रूप में जाना जाता बैक स्कैटरिंग एलाइनमेंट (BSA), और एक कोनिगेनवैल्यू समीकरण को जन्म देता है।

सामान्यीकृत आइगेनवैल्यूनिर्मेय

एक सामान्यीकृत आइगेनवैल्यू निर्मेय (द्वितीय अर्थ) एक (अशून्य) वेक्टर खोजने की निर्मेय है v जो पालन करता है

जहाँ A और B आव्यूह हैं। अगर v कुछ के साथ इस समीकरण का पालन करता है λ, फिर हम कॉल करते हैं v का सामान्यीकृत आइगेनवेक्टर A और B (दूसरे अर्थ में), और λ का सामान्यीकृत आइगेनवैल्यू कहा जाता है A और B (दूसरे अर्थ में) जो सामान्यीकृत आइगेनवेक्टर से मेल खाता है v. के संभावित मान λ को निम्नलिखित समीकरण का पालन करना चाहिए:

अगर n रैखिक रूप से स्वतंत्र वैक्टर {v1, …, vn} पाया जा सकता है, जैसे कि प्रत्येक के लिए i ∈ {1, …, n}, Avi = λiBvi, फिर हम आव्यूह को परिभाषित करते हैं P और D ऐसा है कि

फिर निम्नलिखित समानता रखती है

और प्रमाण है

और तबसे P व्युत्क्रमणीय है, तो हम उपपत्ति को समाप्त करते हुए समीकरण को दाईं ओर से इसके व्युत्क्रम से गुणा करते हैं।

फॉर्म के आव्यूह का सेट AλB, जहाँ λ एक सम्मिश्र संख्या है, जिसे "पेंसिल" कहा जाता है; "आव्यूह पेंसिल" शब्द जोड़ी को भी संदर्भित कर सकता है (A, B) आव्यूह का।[11] अगर B व्युत्क्रम है, तो मूल निर्मेय के रूप में लिखा जा सकता है:

जो एक मानक आइगेनवैल्यू निर्मेय है। हालांकि, ज्यादातर स्थितियों में व्युत्क्रम प्रदर्शन नहीं करना बेहतर होता है, बल्कि मूल रूप से बताई गई सामान्यीकृत आइगेनवैल्यू निर्मेय को हल करना बेहतर होता है। यह विशेष रूप से महत्वपूर्ण है अगर A और B हर्मिटियन आव्यूह हैं, क्योंकि इस मामले में B−1A आमतौर पर हर्मिटियन नहीं है और समाधान के महत्वपूर्ण गुण अब स्पष्ट नहीं हैं।

अगर A और B दोनों सममित या हर्मिटियन हैं, और B भी एक सकारात्मक-निश्चित आव्यूह है, आइगेनवेल्यूज़ λi वास्तविक और आइगेनवेक्टर हैं v1 और v2 अलग-अलग आइगेनवेल्यूज़ ​​​​के साथ हैं B-लांबिक (v1*Bv2 = 0).[12] इस मामले में, आइगेनवेक्टर को चुना जा सकता है ताकि आव्यूह P ऊपर परिभाषित संतुष्ट करता है:

या ,

और सामान्यीकृत आइगेनवेक्टरों का एक आधार (रैखिक बीजगणित) मौजूद है (यह एक दोषपूर्ण आव्यूह निर्मेय नहीं है)।[11] इस मामले को कभी-कभी हर्मिटियन निश्चित पेंसिल या निश्चित पेंसिल कहा जाता है।[11]


यह भी देखें

टिप्पणियाँ

  1. Golub & Van Loan (1996, p. 310)
  2. Kreyszig (1972, p. 273)
  3. Nering (1970, p. 270)
  4. Hayde, A. F.; Twede, D. R. (2002). Shen, Sylvia S. (ed.). "आइगेनवैल्यू, उपकरण शोर और पहचान प्रदर्शन के बीच संबंध पर अवलोकन". Imaging Spectrometry VIII. Proceedings of SPIE. 4816: 355. Bibcode:2002SPIE.4816..355H. doi:10.1117/12.453777.
  5. Twede, D. R.; Hayden, A. F. (2004). Shen, Sylvia S; Lewis, Paul E (eds.). "नियमितीकरण द्वारा सहप्रसरण मैट्रिक्स व्युत्क्रम की विस्तार विधि का शोधन और सामान्यीकरण". Imaging Spectrometry IX. Proceedings of SPIE. 5159: 299. Bibcode:2004SPIE.5159..299T. doi:10.1117/12.506993.
  6. Horn & Johnson (1985), p. 133, Theorem 2.5.3
  7. Horn & Johnson (1985), p. 136, Corollary 2.5.11
  8. 8.0 8.1 8.2 8.3 8.4 8.5 Trefethen, Lloyd N.; Bau, David (1997). संख्यात्मक रैखिक बीजगणित. SIAM. ISBN 978-0-89871-361-9.
  9. Ipsen, Ilse, and Rebecca M. Wills, Analysis and Computation of Google's PageRank, 7th IMACS International Symposium on Iterative Methods in Scientific Computing, Fields Institute, Toronto, Canada, 5–8 May 2005.
  10. Quarteroni, Alfio; Sacco, Riccardo; Saleri, Fausto (2000). "section 5.8.2". संख्यात्मक गणित. Springer. p. 15. ISBN 978-0-387-98959-4.
  11. 11.0 11.1 11.2 Bai, Z.; Demmel, J.; Dongarra, J.; Ruhe, A.; Van Der Vorst, H., eds. (2000). "Generalized Hermitian Eigenvalue Problems". Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Philadelphia: SIAM. ISBN 978-0-89871-471-5.
  12. Parlett, Beresford N. (1998). सममित eigenvalue समस्या (Reprint. ed.). Philadelphia: Society for Industrial and Applied Mathematics. p. 345. doi:10.1137/1.9781611971163. ISBN 978-0-89871-402-9.


संदर्भ


बाहरी संबंध