डिराक माप: Difference between revisions
No edit summary |
No edit summary |
||
Line 19: | Line 19: | ||
मान लीजिए कि {{math|(''X'', ''T'')}} एक [[टोपोलॉजिकल स्पेस|टोपोलॉजिकल रिक्त स्थान]] है और Σ कम से कम {{math|''X''}} पर बोरेल σ-बीजगणित {{math|''σ''(''T'')}} के रूप में सही प्रतीत होता है। | मान लीजिए कि {{math|(''X'', ''T'')}} एक [[टोपोलॉजिकल स्पेस|टोपोलॉजिकल रिक्त स्थान]] है और Σ कम से कम {{math|''X''}} पर बोरेल σ-बीजगणित {{math|''σ''(''T'')}} के रूप में सही प्रतीत होता है। | ||
* {{math|''δ''<sub>''x''</sub>}} [[अगर और केवल अगर]] टोपोलॉजी | * {{math|''δ''<sub>''x''</sub>}} [[अगर और केवल अगर|यदि और केवल यदि]] टोपोलॉजी {{math|''T''}} एक सख्त सकारात्मक उपाय है। इस प्रकार कि {{math|''x''}} प्रत्येक गैर-खाली संवृत समुच्चय में उपस्थित है। उदा [[तुच्छ टोपोलॉजी|ट्रिवियल टोपोलॉजी]] की स्थिति में {{math|{∅, ''X''}<nowiki/>}} स्थित है। | ||
* तब से {{math|''δ''<sub>''x''</sub>}} संभाव्यता माप है, यह [[स्थानीय परिमित माप]] भी है। | * तब से {{math|''δ''<sub>''x''</sub>}} संभाव्यता माप है, यह [[स्थानीय परिमित माप]] भी है। | ||
* | * यदि {{math|''X''}} अपने बोरेल के साथ एक [[हॉसडॉर्फ स्पेस]] टोपोलॉजिकल स्पेस है {{math|''σ''}}-बीजगणित, तब {{math|''δ''<sub>''x''</sub>}} एक [[आंतरिक नियमित माप]] होने की स्थिति को संतुष्ट करता है, क्योंकि [[सिंगलटन (गणित)]] जैसे समुच्चय करता है {{math|{''x''}<nowiki/>}} हमेशा [[ कॉम्पैक्ट जगह ]] होते हैं। इस तरह, {{math|''δ''<sub>''x''</sub>}} भी एक [[रेडॉन माप]] है। | ||
* यह मानते हुए कि टोपोलॉजी {{math|''T''}} इतना ही काफी है {{math|{''x''}<nowiki/>}} बंद है, जो अधिकांश अनुप्रयोगों में मामला है, का [[समर्थन (माप सिद्धांत)]]। {{math|''δ''<sub>''x''</sub>}} है {{math|{''x''}<nowiki/>}}. (अन्यथा, {{math|supp(''δ''<sub>''x''</sub>)}} का समापन है {{math|{''x''}<nowiki/>}} में {{math|(''X'', ''T'')}}।) आगे, {{math|''δ''<sub>''x''</sub>}} एकमात्र प्रायिकता माप है जिसका समर्थन है {{math|{''x''}<nowiki/>}}. | * यह मानते हुए कि टोपोलॉजी {{math|''T''}} इतना ही काफी है {{math|{''x''}<nowiki/>}} बंद है, जो अधिकांश अनुप्रयोगों में मामला है, का [[समर्थन (माप सिद्धांत)]]। {{math|''δ''<sub>''x''</sub>}} है {{math|{''x''}<nowiki/>}}. (अन्यथा, {{math|supp(''δ''<sub>''x''</sub>)}} का समापन है {{math|{''x''}<nowiki/>}} में {{math|(''X'', ''T'')}}।) आगे, {{math|''δ''<sub>''x''</sub>}} एकमात्र प्रायिकता माप है जिसका समर्थन है {{math|{''x''}<nowiki/>}}. | ||
* | * यदि {{math|''X''}} है {{math|''n''}}-आयामी [[यूक्लिडियन अंतरिक्ष]] {{math|'''R'''<sup>''n''</sup>}} अपने सामान्य के साथ {{math|''σ''}}-बीजगणित और {{math|''n''}}-आयामी [[लेबेस्ग उपाय]] {{math|''λ''<sup>''n''</sup>}}, तब {{math|''δ''<sub>''x''</sub>}} के संबंध में एक विलक्षण उपाय है {{math|''λ''<sup>''n''</sup>}}: बस विघटित करें {{math|'''R'''<sup>''n''</sup>}} जैसा {{math|1=''A'' = '''R'''<sup>''n''</sup> \ {''x''}<nowiki/>}} और {{math|1=''B'' = {''x''}<nowiki/>}} और उसका निरीक्षण करें {{math|1=''δ''<sub>''x''</sub>(''A'') {{=}} ''λ''<sup>''n''</sup>(''B'') = 0}}. | ||
* डायराक माप एक σ-परिमित माप | सिग्मा-परिमित माप है। | * डायराक माप एक σ-परिमित माप | सिग्मा-परिमित माप है। | ||
Revision as of 00:08, 30 May 2023
गणित में, डायराक माप केवल एक समुच्चय के आधार पर आकार निर्दिष्ट करता है कि इसमें एक निश्चित तत्व x उपस्थित है या नहीं। यह डिराक डेल्टा फलन, भौतिकी और अन्य तकनीकी क्षेत्रों में महत्वपूर्ण उपकरण के विचार को औपचारिक रूप प्रदान करने का एक उपाय है।
परिभाषा
डायराक माप एक समुच्चय X पर माप δx (किसी भी σ-बीजगणित के साथ उपसमुच्चय X का) दिए गए x ∈ X के लिए और कोई भी (मापने योग्य समुच्चय) समुच्चय A ⊆ X के द्वारा परिभाषित करता है।
जहाँ 1A, A का सूचक फलन है।
डायराक माप एक संभाव्यता माप है और संभाव्यता के संदर्भ में यह लगभग सुनिश्चित परिणाम प्रतिदर्श समष्टि X में परिणाम x का प्रतिनिधित्व करता है। हम यह भी कह सकते हैं कि माप x पर एक एकल परमाणु (माप सिद्धांत) है। चूंकि डायराक माप को परमाणु माप के रूप में मानना सही नहीं है। जब हम डायराक डेल्टा की अनुक्रमिक परिभाषा पर विचार करते हैं। डेल्टा अनुक्रम की सीमा के रूप में डायराक उपाय संभाव्यता उपायों के उत्तल समुच्चय के एक्सट्रीम प्वॉइंट X पर उपस्थित हैं।
इसका नाम डायराक डेल्टा फलन से बैक-फॉर्मेशन है। जिसे एक वितरण (गणित) के रूप में माना जाता है, उदाहरण के लिए वास्तविक रेखा पर, विशेष प्रकार के वितरण के लिए उपाय किए जा सकते हैं। पहचान-
जो निम्नलिखित रूप में है-
डेल्टा फलन की परिभाषा का भाग बनने के लिए अधिकांशतः प्राप्त किया जाता है, जिसको लेबेसेग एकीकरण के प्रमेय के रूप में होता है।
डायराक माप के गुण
माना कि δx कुछ मापने योग्य स्थान (X, Σ) में कुछ निश्चित बिंदु x पर केंद्रित डायराक माप को प्रदर्शित करता है।
- δx एक प्रायिकता माप है और इसलिए यह परिमित माप है।
मान लीजिए कि (X, T) एक टोपोलॉजिकल रिक्त स्थान है और Σ कम से कम X पर बोरेल σ-बीजगणित σ(T) के रूप में सही प्रतीत होता है।
- δx यदि और केवल यदि टोपोलॉजी T एक सख्त सकारात्मक उपाय है। इस प्रकार कि x प्रत्येक गैर-खाली संवृत समुच्चय में उपस्थित है। उदा ट्रिवियल टोपोलॉजी की स्थिति में {∅, X} स्थित है।
- तब से δx संभाव्यता माप है, यह स्थानीय परिमित माप भी है।
- यदि X अपने बोरेल के साथ एक हॉसडॉर्फ स्पेस टोपोलॉजिकल स्पेस है σ-बीजगणित, तब δx एक आंतरिक नियमित माप होने की स्थिति को संतुष्ट करता है, क्योंकि सिंगलटन (गणित) जैसे समुच्चय करता है {x} हमेशा कॉम्पैक्ट जगह होते हैं। इस तरह, δx भी एक रेडॉन माप है।
- यह मानते हुए कि टोपोलॉजी T इतना ही काफी है {x} बंद है, जो अधिकांश अनुप्रयोगों में मामला है, का समर्थन (माप सिद्धांत)। δx है {x}. (अन्यथा, supp(δx) का समापन है {x} में (X, T)।) आगे, δx एकमात्र प्रायिकता माप है जिसका समर्थन है {x}.
- यदि X है n-आयामी यूक्लिडियन अंतरिक्ष Rn अपने सामान्य के साथ σ-बीजगणित और n-आयामी लेबेस्ग उपाय λn, तब δx के संबंध में एक विलक्षण उपाय है λn: बस विघटित करें Rn जैसा A = Rn \ {x} और B = {x} और उसका निरीक्षण करें δx(A) = λn(B) = 0.
- डायराक माप एक σ-परिमित माप | सिग्मा-परिमित माप है।
सामान्यीकरण
एक असतत माप डायराक माप के समान है, सिवाय इसके कि यह एक बिंदु के बजाय कई बिंदुओं पर केंद्रित है। अधिक औपचारिक रूप से, वास्तविक रेखा पर एक माप (गणित) को असतत माप कहा जाता है (लेबेसेग माप के संबंध में) यदि इसका समर्थन (माप सिद्धांत) अधिक से अधिक एक गणनीय समुच्चय है।
यह भी देखें
- असतत उपाय
- डिराक डेल्टा फलन
संदर्भ
- Dieudonné, Jean (1976). "Examples of measures". Treatise on analysis, Part 2. Academic Press. p. 100. ISBN 0-12-215502-5.
- Benedetto, John (1997). "§2.1.3 Definition, δ[[Category: Templates Vigyan Ready]]". Harmonic analysis and applications. CRC Press. p. 72. ISBN 0-8493-7879-6.
{{cite book}}
: URL–wikilink conflict (help)