डिराक माप: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image:Hasse diagram of powerset of 3.svg|right|thumb|250px|3-बिंदु | [[Image:Hasse diagram of powerset of 3.svg|right|thumb|250px|3-बिंदु समुच्चय के सभी संभावित उपसमुच्चयों को प्रदर्शित करने वाला आरेख {{math|{''x'',''y'',''z''}}}. डिराक माप {{math|''δ<sub>x</sub>''}} आरेख के ऊपरी-बाएँ आधे भाग में सभी समुच्चयों के लिए 1 और निचले-दाएँ आधे भाग में सभी समुच्चयों के लिए 0 का आकार निर्दिष्ट करता है।]]गणित में, '''डिराक माप''' केवल एक समुच्चय के आधार पर आकार को निर्दिष्ट करता है कि इसमें एक निश्चित तत्व ''x'' उपस्थित है अथवा नहीं। यह [[डिराक डेल्टा समारोह|डिराक डेल्टा फलन]], भौतिकी और अन्य तकनीकी क्षेत्रों में महत्वपूर्ण उपकरण के विचार को औपचारिक रूप प्रदान करने का एक उपाय है। | ||
== परिभाषा == | == परिभाषा == | ||
डिराक माप एक समुच्चय {{math|''X''}} | डिराक माप एक समुच्चय {{math|''X''}} पर माप {{math|''δ''<sub>''x''</sub>}} (किसी भी {{math|''σ''}}-बीजगणित के साथ [[सबसेट|उपसमुच्चय]] {{math|''X''}} का) दिए गए {{math|''x'' ∈ ''X''}} के लिए और कोई भी [[मापने योग्य सेट|(मापने योग्य समुच्चय)]] समुच्चय {{math|''A'' ⊆ ''X''}} के द्वारा परिभाषित करता है। | ||
:<math>\delta_x (A) = 1_A(x)= \begin{cases} 0, & x \not \in A; \\ 1, & x \in A. \end{cases}</math> | :<math>\delta_x (A) = 1_A(x)= \begin{cases} 0, & x \not \in A; \\ 1, & x \in A. \end{cases}</math> | ||
जहाँ {{math|1<sub>''A''</sub>}}, {{math|''A''}} का सूचक फलन है। | जहाँ {{math|1<sub>''A''</sub>}}, {{math|''A''}} का सूचक फलन है। | ||
डिराक माप एक [[संभाव्यता माप]] है और संभाव्यता के संदर्भ में यह लगभग सुनिश्चित परिणाम प्रतिदर्श समष्टि X में परिणाम x का प्रतिनिधित्व करता है। हम यह भी कह सकते हैं कि माप {{math|''x''}} पर एक एकल [[परमाणु (माप सिद्धांत)]] है। चूंकि डिराक माप को परमाणु माप के रूप में मानना सही नहीं है। जब हम डिराक डेल्टा की अनुक्रमिक परिभाषा पर विचार करते हैं। [[डेल्टा अनुक्रम]] की सीमा के रूप में डिराक उपाय संभाव्यता उपायों के उत्तल | डिराक माप एक [[संभाव्यता माप]] है और संभाव्यता के संदर्भ में यह लगभग सुनिश्चित परिणाम प्रतिदर्श समष्टि X में परिणाम x का प्रतिनिधित्व करता है। हम यह भी कह सकते हैं कि माप {{math|''x''}} पर एक एकल [[परमाणु (माप सिद्धांत)]] है। चूंकि डिराक माप को परमाणु माप के रूप में मानना सही नहीं है। जब हम डिराक डेल्टा की अनुक्रमिक परिभाषा पर विचार करते हैं। [[डेल्टा अनुक्रम]] की सीमा के रूप में डिराक उपाय संभाव्यता उपायों के उत्तल समुच्चय के [[चरम बिंदु|एक्सट्रीम प्वॉइंट]] {{math|''X''}} पर उपस्थित हैं। | ||
इसका नाम डिराक डेल्टा फलन से बैक-फॉर्मेशन है। जिसे एक [[वितरण (गणित)]] के रूप में माना जाता है, उदाहरण के लिए [[वास्तविक रेखा]] पर, विशेष प्रकार के वितरण के लिए उपाय किए जा सकते हैं। पहचान- | इसका नाम डिराक डेल्टा फलन से बैक-फॉर्मेशन है। जिसे एक [[वितरण (गणित)]] के रूप में माना जाता है, उदाहरण के लिए [[वास्तविक रेखा]] पर, विशेष प्रकार के वितरण के लिए उपाय किए जा सकते हैं। पहचान- | ||
Line 31: | Line 31: | ||
== यह भी देखें == | == यह भी देखें == | ||
* असतत माप | * असतत माप | ||
* डिराक डेल्टा | * डिराक डेल्टा फलन | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 07:50, 30 May 2023
गणित में, डिराक माप केवल एक समुच्चय के आधार पर आकार को निर्दिष्ट करता है कि इसमें एक निश्चित तत्व x उपस्थित है अथवा नहीं। यह डिराक डेल्टा फलन, भौतिकी और अन्य तकनीकी क्षेत्रों में महत्वपूर्ण उपकरण के विचार को औपचारिक रूप प्रदान करने का एक उपाय है।
परिभाषा
डिराक माप एक समुच्चय X पर माप δx (किसी भी σ-बीजगणित के साथ उपसमुच्चय X का) दिए गए x ∈ X के लिए और कोई भी (मापने योग्य समुच्चय) समुच्चय A ⊆ X के द्वारा परिभाषित करता है।
जहाँ 1A, A का सूचक फलन है।
डिराक माप एक संभाव्यता माप है और संभाव्यता के संदर्भ में यह लगभग सुनिश्चित परिणाम प्रतिदर्श समष्टि X में परिणाम x का प्रतिनिधित्व करता है। हम यह भी कह सकते हैं कि माप x पर एक एकल परमाणु (माप सिद्धांत) है। चूंकि डिराक माप को परमाणु माप के रूप में मानना सही नहीं है। जब हम डिराक डेल्टा की अनुक्रमिक परिभाषा पर विचार करते हैं। डेल्टा अनुक्रम की सीमा के रूप में डिराक उपाय संभाव्यता उपायों के उत्तल समुच्चय के एक्सट्रीम प्वॉइंट X पर उपस्थित हैं।
इसका नाम डिराक डेल्टा फलन से बैक-फॉर्मेशन है। जिसे एक वितरण (गणित) के रूप में माना जाता है, उदाहरण के लिए वास्तविक रेखा पर, विशेष प्रकार के वितरण के लिए उपाय किए जा सकते हैं। पहचान-
जो निम्नलिखित रूप में है-
डेल्टा फलन की परिभाषा का भाग बनने के लिए अधिकांशतः प्राप्त किया जाता है, जिसको लेबेसेग एकीकरण के प्रमेय के रूप में होता है।
डिराक माप के गुण
माना कि δx कुछ मापने योग्य स्थान (X, Σ) में कुछ निश्चित बिंदु x पर केंद्रित डिराक माप को प्रदर्शित करता है।
- δx एक प्रायिकता माप है और इसलिए यह परिमित माप है।
मान लीजिए कि (X, T) एक टोपोलॉजिकल रिक्त स्थान है और Σ कम से कम X पर बोरेल σ-बीजगणित σ(T) के रूप में सही प्रतीत होता है।
- δx यदि और केवल यदि टोपोलॉजी T एक सख्त सकारात्मक उपाय है। इस प्रकार कि x प्रत्येक गैर-खाली संवृत समुच्चय में उपस्थित है। उदा ट्रिवियल टोपोलॉजी की स्थिति में {∅, X} स्थित है।
- तब से δx संभाव्यता माप है, यह स्थानीय परिमित माप भी है।
- यदि X अपने बोरेल σ-बीजगणित के साथ एक हॉसडॉर्फ स्पेस टोपोलॉजिकल स्पेस है। तब δx एक आंतरिक नियमित माप होने की स्थिति को संतुष्ट करता है क्योंकि सिंगलटन (गणित) जैसे समुच्चय {x} सदैव कॉम्पैक्ट होते हैं। इसी प्रकार δx भी एक रेडॉन माप है।
- यह मानते हुए कि टोपोलॉजी T इतना ही पर्याप्त है कि {x} विवृत है। जो अधिकांश अनुप्रयोगों की स्थिति में है। δx का समर्थन {x} है। (अन्यथा, supp(δx) (X, T) में {x} का समापन है।) इसके अतिरिक्त δx एकमात्र प्रायिकता माप है। जिसका समर्थन {x} करता है।
- यदि X अपने सामान्य σ-बीजगणित और n-आयामी लेबेस्ग माप λn के साथ n-आयामी यूक्लिडियन रिक्त स्थान Rn है। तब δx के संबंध में एक विलक्षण उपाय λn है। सामान्यतः Rn को A = Rn \ {x} और B = {x} के रूप में विघटित करें और देखें कि δx(A) = λn(B) = 0।
- डिराक माप एक सिग्मा-परिमित माप है।
सामान्यीकरण
असतत माप डिराक माप के समान है, इसके अतिरिक्त कि यह एक बिंदु के स्थान पर कई बिंदुओं पर केंद्रित करने का कार्य करता है। अधिक औपचारिक रूप से, वास्तविक रेखा पर एक माप (गणित) को असतत माप कहा जाता है (लेबेसेग माप के संबंध में)। यदि इसका समर्थन (माप सिद्धांत) अधिक से अधिक एक गणना करने योग्य समुच्चय पर है।
यह भी देखें
- असतत माप
- डिराक डेल्टा फलन
संदर्भ
- Dieudonné, Jean (1976). "Examples of measures". Treatise on analysis, Part 2. Academic Press. p. 100. ISBN 0-12-215502-5.
- Benedetto, John (1997). "§2.1.3 Definition, δ[[Category: Templates Vigyan Ready]]". Harmonic analysis and applications. CRC Press. p. 72. ISBN 0-8493-7879-6.
{{cite book}}
: URL–wikilink conflict (help)