क्लेस्ली श्रेणी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 19: Line 19:
== एक्सटेंशन ऑपरेटर और क्लेस्ली ट्रिपल्स ==
== एक्सटेंशन ऑपरेटर और क्लेस्ली ट्रिपल्स ==


क्लेस्ली तीरों की संरचना को विस्तार ऑपरेटर (-) के माध्यम से संक्षेप में व्यक्त किया जा सकता है<sup>#</sup> : होम (X, TY) → होम (TX, TY)श्रेणी C पर एक मोनाड 〈T, η, μ〉 दिया गया है और एक आकारिकी f : X → TY चलो
क्लेस्ली एर्रोस की संरचना को विस्तार ऑपरेटर ()<sup>#</sup> : Hom(''X'', ''TY'') → Hom(''TX'', ''TY'') के माध्यम से संक्षेप में व्यक्त किया जा सकता है: श्रेणी C पर एक मोनाड 〈T, η, μ〉दिया गया है और एक आकारिकी f: X → TY मान लीजिये
:<math>f^\sharp = \mu_Y\circ Tf.</math>
:<math>f^\sharp = \mu_Y\circ Tf.</math>
क्लेस्ली श्रेणी C में रचना<sub>''T''</sub> तब लिखा जा सकता है
क्लेस्ली श्रेणी C<sub>''T''</sub> में रचना तब लिखा जा सकता है
:<math>g\circ_T f = g^\sharp \circ f.</math>
:<math>g\circ_T f = g^\sharp \circ f.</math>
विस्तार ऑपरेटर पहचान को संतुष्ट करता है:
विस्तार ऑपरेटर पहचान को संतुष्ट करता है:
Line 27: Line 27:
f^\sharp\circ\eta_X &= f\\
f^\sharp\circ\eta_X &= f\\
(g^\sharp\circ f)^\sharp &= g^\sharp \circ f^\sharp\end{align}</math>
(g^\sharp\circ f)^\sharp &= g^\sharp \circ f^\sharp\end{align}</math>
जहाँ f : X → TY और g : Y → TZ। यह इन गुणों से तुच्छ रूप से अनुसरण करता है कि क्लेस्ली रचना साहचर्य है और वह η<sub>''X''</sub> पहचान है।
जहाँ f: X → TY और g: Y → TZ। यह इन गुणों से तुच्छ रूप से अनुसरण करता है कि क्लेस्ली रचना साहचर्य है और वह η<sub>''X''</sub> पहचान है।


वास्तव में, एक मोनाड देना एक क्लेस्ली ट्रिपल 〈T, η, (-) देना है<sup>#</sup>〉, यानी
वास्तव में, एक मोनाड देने के लिए क्लेस्ली ट्रिपल 〈T, η, (-)<sup>#</sup>〉, अर्थात् देना है।
* एक समारोह <math>T\colon \mathrm{ob}(C)\to \mathrm{ob}(C)</math>;
* एक फलन <math>T\colon \mathrm{ob}(C)\to \mathrm{ob}(C)</math>;
* प्रत्येक वस्तु के लिए <math>A</math> में <math>C</math>, एक रूपवाद <math>\eta_A\colon A\to T(A)</math>;
* प्रत्येक वस्तु के लिए <math>A</math> में <math>C</math>, एक रूपवाद <math>\eta_A\colon A\to T(A)</math>;
* प्रत्येक रूपवाद के लिए <math>f\colon A\to T(B)</math> में <math>C</math>, एक रूपवाद <math>f^\sharp\colon T(A)\to T(B)</math>
* प्रत्येक रूपवाद के लिए <math>f\colon A\to T(B)</math> में <math>C</math>, एक रूपवाद <math>f^\sharp\colon T(A)\to T(B)</math>

Revision as of 11:00, 31 May 2023

श्रेणी सिद्धांत में, क्लेस्ली श्रेणी स्वाभाविक रूप से किसी भी मोनाड (श्रेणी सिद्धांत)T से जुड़ी एक श्रेणी (गणित) है। यह मुक्त टी-अल्जेब्रा की श्रेणी के बराबर है। क्लेस्ली श्रेणी इस प्रश्न के दो अतिवादी समाधानों में से एक है क्या प्रत्येक मोनाड एक संयोजन (श्रेणी सिद्धांत) से उत्पन्न होता है? अन्य चरम समाधान ईलेनबर्ग-मूर श्रेणी है। क्लेस्ली श्रेणियों का नाम गणितज्ञ हेनरिक क्लेस्ली के नाम पर रखा गया है।

औपचारिक परिभाषा

मान लो〈T, η, μ〉एक श्रेणी C पर एक मोनाड (श्रेणी सिद्धांत) बनें। C की 'क्लेस्ली श्रेणी' श्रेणी CT है जिनकी वस्तुएं और आकारिकी द्वारा दी गई हैं

अर्थात्, प्रत्येक आकारिकी f: X → TY C में (कोडोमेन TY के साथ) को CT (लेकिन कोडोमेन Y के साथ) में एक आकारिकी के रूप में भी माना जा सकता है। CT में आकारिकी की संरचना द्वारा दिया गया है

जहां f: X → T Y और g: Y → T Z। पहचान रूपवाद मोनाड यूनिट η द्वारा दिया गया है:

.

इसे लिखने का एक वैकल्पिक विधि, जो उस श्रेणी को स्पष्ट करता है जिसमें प्रत्येक वस्तु रहती है, मैक लेन द्वारा उपयोग किया जाता है।[1] हम इस प्रस्तुति के लिए बहुत थोड़े भिन्न संकेतन का उपयोग करते हैं। उपरोक्त के रूप में एक ही मोनाड और श्रेणी को देखते हुए, हम में प्रत्येक वस्तु के साथ एक नई वस्तु , और में प्रत्येक आकारिकी के लिए एक आकारिकी जोड़ते हैं। साथ में, ये वस्तुएँ और आकृतियाँ मिलकर हमारी श्रेणी बनाती हैं, जहाँ हम परिभाषित करते हैं

फिर पहचान आकारिकी में है


एक्सटेंशन ऑपरेटर और क्लेस्ली ट्रिपल्स

क्लेस्ली एर्रोस की संरचना को विस्तार ऑपरेटर (–)# : Hom(X, TY) → Hom(TX, TY) के माध्यम से संक्षेप में व्यक्त किया जा सकता है: श्रेणी C पर एक मोनाड 〈T, η, μ〉दिया गया है और एक आकारिकी f: X → TY मान लीजिये

क्लेस्ली श्रेणी CT में रचना तब लिखा जा सकता है

विस्तार ऑपरेटर पहचान को संतुष्ट करता है:

जहाँ f: X → TY और g: Y → TZ। यह इन गुणों से तुच्छ रूप से अनुसरण करता है कि क्लेस्ली रचना साहचर्य है और वह ηX पहचान है।

वास्तव में, एक मोनाड देने के लिए क्लेस्ली ट्रिपल 〈T, η, (-)#〉, अर्थात् देना है।

  • एक फलन ;
  • प्रत्येक वस्तु के लिए में , एक रूपवाद ;
  • प्रत्येक रूपवाद के लिए में , एक रूपवाद

जैसे कि एक्सटेंशन ऑपरेटरों के लिए उपरोक्त तीन समीकरण संतुष्ट हैं।

क्लेस्ली एडजंक्शन

क्लेस्ली श्रेणियों को मूल रूप से यह दिखाने के लिए परिभाषित किया गया था कि प्रत्येक मोनाड एक संयोजन से उत्पन्न होता है। वह रचना इस प्रकार है।

चलो 〈T, η, μ〉 एक श्रेणी C पर एक मोनाड हो और C को जाने दोT संबंधित क्लेस्ली श्रेणी हो। उपरोक्त "औपचारिक परिभाषा" खंड में वर्णित मैक लेन के नोटेशन का उपयोग करके, एक फ़ंक्टर F: C → C परिभाषित करेंT द्वारा

और एक फ़ैक्टर जी: सीT → C द्वारा

कोई यह दिखा सकता है कि F और G वास्तव में फ़ैक्टर हैं और F को G के समीप छोड़ दिया गया है। एडजंक्शन का कॉउंट द्वारा दिया गया है

अंत में, कोई यह दिखा सकता है कि T = GF और μ = GεF ताकि 〈T, η, μ〉 आसन्न 〈F, G, η, ε〉 से जुड़ा मोनाड हो।

दिखा रहा है कि GF = T

श्रेणी C में किसी वस्तु X के लिए:

किसी के लिए श्रेणी C में:

तब से C और में किसी वस्तु एक्स के लिए सच है C में किसी भी आकारिकी f के लिए सत्य है, तब . Q.E.D.

संदर्भ

  1. Mac Lane (1998). कामकाजी गणितज्ञ के लिए श्रेणियाँ. p. 147.


बाहरी संबंध