सामग्री (माप सिद्धांत): Difference between revisions
(Created page with "गणित में, विशेष रूप से माप सिद्धांत में, एक सामग्री <math>\mu</math> सबसेट के...") |
No edit summary |
||
Line 1: | Line 1: | ||
गणित में, विशेष रूप से [[माप सिद्धांत]] में, | गणित में, विशेष रूप से [[माप सिद्धांत]] में, सामग्री <math>\mu</math> उपसम्मुचय के संग्रह पर परिभाषित वास्तविक-मूल्यवान फलन <math>\mathcal{A}</math> है जैसे कि | ||
# <math>\mu(A)\in\ [0, \infty] \text{ | # <math>\mu(A)\in\ [0, \infty] \text{ जब } A \in \mathcal{A}.</math> | ||
# <math>\mu(\varnothing) = 0.</math> | # <math>\mu(\varnothing) = 0.</math> | ||
# <math>\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2) \text{ | # <math>\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2) \text{ जब } A_1, A_2, A_1\cup A_2\ \in \mathcal{A} \text{ तथा } A_1 \cap A_2 = \varnothing.</math> | ||
अर्थात्, | अर्थात्, सामग्री माप (गणित) का सामान्यीकरण है: जबकि उत्तरार्द्ध को योगात्मक रूप से योगात्मक होना चाहिए, पूर्व को केवल परिमित योगात्मक होना चाहिए। | ||
कई महत्वपूर्ण अनुप्रयोगों में <math>\mathcal{A}</math> [[सेट की अंगूठी]] या कम से कम | कई महत्वपूर्ण अनुप्रयोगों में <math>\mathcal{A}</math> [[सेट की अंगूठी|सम्मुचयो का वलय]] या कम से कम सम्मुचयो के सेमरिंग के लिए चुना जाता है, जिसमें कुछ अतिरिक्त गुणों को घटाया जा सकता है जो नीचे वर्णित हैं। इस कारण से कुछ लेखक केवल सेमीरिंग या यहां तक कि वलयो कि स्थितियों में सामग्री को परिभाषित करना पसंद करते हैं। | ||
यदि कोई सामग्री अतिरिक्त रूप से | यदि कोई सामग्री अतिरिक्त रूप से σ-योजक है तो इसे पूर्व-माप कहा जाता है और यदि इसके अलावा <math>\mathcal{A}</math> σ-बीजगणित, सामग्री को माप (गणित) कहा जाता है। इसलिए प्रत्येक (वास्तविक-मूल्यवान) माप एक सामग्री है, परन्तु इसके विपरीत नहीं हैं। सामग्री एक स्थान पर बंधे हुए कार्यों को एकीकृत करने की एक अच्छी धारणा देती है परन्तु असीमित एकीकृत फलन करते समय बहुत गलत व्यवहार कर सकती है, जबकि उपाय असीमित एकीकृत फलन की अच्छी धारणा देते हैं। | ||
== उदाहरण == | == उदाहरण == |
Revision as of 15:45, 31 May 2023
गणित में, विशेष रूप से माप सिद्धांत में, सामग्री उपसम्मुचय के संग्रह पर परिभाषित वास्तविक-मूल्यवान फलन है जैसे कि
अर्थात्, सामग्री माप (गणित) का सामान्यीकरण है: जबकि उत्तरार्द्ध को योगात्मक रूप से योगात्मक होना चाहिए, पूर्व को केवल परिमित योगात्मक होना चाहिए।
कई महत्वपूर्ण अनुप्रयोगों में सम्मुचयो का वलय या कम से कम सम्मुचयो के सेमरिंग के लिए चुना जाता है, जिसमें कुछ अतिरिक्त गुणों को घटाया जा सकता है जो नीचे वर्णित हैं। इस कारण से कुछ लेखक केवल सेमीरिंग या यहां तक कि वलयो कि स्थितियों में सामग्री को परिभाषित करना पसंद करते हैं।
यदि कोई सामग्री अतिरिक्त रूप से σ-योजक है तो इसे पूर्व-माप कहा जाता है और यदि इसके अलावा σ-बीजगणित, सामग्री को माप (गणित) कहा जाता है। इसलिए प्रत्येक (वास्तविक-मूल्यवान) माप एक सामग्री है, परन्तु इसके विपरीत नहीं हैं। सामग्री एक स्थान पर बंधे हुए कार्यों को एकीकृत करने की एक अच्छी धारणा देती है परन्तु असीमित एकीकृत फलन करते समय बहुत गलत व्यवहार कर सकती है, जबकि उपाय असीमित एकीकृत फलन की अच्छी धारणा देते हैं।
उदाहरण
सभी आधे खुले अंतरालों पर एक सामग्री को परिभाषित करने के लिए एक शास्त्रीय उदाहरण है उनकी सामग्री को अंतराल की लंबाई पर सेट करके, यानी, आगे यह दिखाया जा सकता है कि यह सामग्री वास्तव में σ-योगात्मक है और इस प्रकार सभी आधे-खुले अंतरालों की संगोष्ठी पर एक पूर्व-माप को परिभाषित करता है। इसका उपयोग कैराथियोडोरी के विस्तार प्रमेय का उपयोग करके वास्तविक संख्या रेखा के लिए लेबेसेग माप के निर्माण के लिए किया जा सकता है। सामान्य निर्माण के बारे में अधिक जानकारी के लिए लेबेसेग माप # लेबेसेग माप का निर्माण पर लेख देखें।
सामग्री का एक उदाहरण जो σ-बीजगणित पर माप नहीं है, सकारात्मक पूर्णांकों के सभी उपसमुच्चय पर सामग्री है जिसका मूल्य है किसी भी पूर्णांक पर और किसी भी अनंत उपसमुच्चय पर अनंत है।
सकारात्मक पूर्णांकों पर सामग्री का एक उदाहरण जो हमेशा परिमित होता है लेकिन माप नहीं होता है, निम्नानुसार दिया जा सकता है। बंधे हुए अनुक्रमों पर एक सकारात्मक रैखिक कार्यात्मक लें जो कि 0 है यदि अनुक्रम में केवल गैर-शून्य तत्वों की एक परिमित संख्या है और अनुक्रम पर मान 1 लेता है इसलिए कार्यात्मक कुछ अर्थों में किसी भी बंधे अनुक्रम का औसत मूल्य देता है। (इस तरह के कार्यात्मक को स्पष्ट रूप से नहीं बनाया जा सकता है, लेकिन हैन-बानाच प्रमेय द्वारा मौजूद है।) फिर सकारात्मक पूर्णांकों के एक सेट की सामग्री अनुक्रम का औसत मान है जो इस सेट पर 1 है और कहीं और 0 है। अनौपचारिक रूप से, एक पूर्णांक के एक उपसमुच्चय की सामग्री के बारे में सोच सकता है कि एक यादृच्छिक रूप से चुने गए पूर्णांक इस उपसमुच्चय में निहित है (हालांकि यह संभाव्यता सिद्धांत में मौका की सामान्य परिभाषाओं के साथ संगत नहीं है, जो गणनीय योगात्मकता मानते हैं)।
गुण
अक्सर सामग्री को सेट के संग्रह पर परिभाषित किया जाता है जो आगे की बाधाओं को पूरा करता है। इस मामले में अतिरिक्त गुण निकाले जा सकते हैं जो सेट के किसी भी संग्रह पर परिभाषित सामग्री के लिए सामान्य रूप से धारण करने में विफल रहते हैं।
सेमीरिंग्स पर
अगर सेमिरिंग#सेमिरिंग ऑफ सेट बनाता है तो निम्नलिखित कथनों को घटाया जा सकता है:
- हर सामग्री मोनोटोन है यानी
- हर सामग्री उप-योगात्मक है, अर्थात
- के लिए ऐसा है कि
अंगूठियों पर
अगर इसके अलावा एक रिंग ऑफ़ सेट्स है जो अतिरिक्त रूप से मिलता है:
- घटाव: के लिए संतुष्टि देने वाला यह इस प्रकार है
- उप-विषमता:
- -सुपरएडिटिविटी: किसी के लिए भी जोड़ो में अलग करना संतोषजनक अपने पास
- अगर एक परिमित सामग्री है, अर्थात् तब समावेश-बहिष्करण सिद्धांत लागू होता है: कहाँ सभी के लिए
बंधे हुए कार्यों का एकीकरण
सामग्री के संबंध में कार्यों के सामान्य एकीकरण में अच्छा व्यवहार नहीं होता है। हालाँकि, एकीकरण की एक अच्छी तरह से व्यवहार की गई धारणा है, बशर्ते कि कार्य सीमित हो और अंतरिक्ष की कुल सामग्री परिमित हो, जिसे निम्नानुसार दिया गया है।
मान लीजिए कि किसी स्थान की कुल सामग्री परिमित है। अगर अंतरिक्ष पर एक बंधा हुआ कार्य है जैसे कि वास्तविक के किसी भी खुले उपसमुच्चय की व्युत्क्रम छवि में एक सामग्री है, तो हम अभिन्न को परिभाषित कर सकते हैं सामग्री के रूप में के संबंध में
बंधे हुए कार्यों के रिक्त स्थान के दोहरे
लगता है कि कुछ जगह पर एक उपाय है परिबद्ध औसत दर्जे का कार्य करता है सुप्रीम नॉर्म के संबंध में एक बैनच स्पेस बनाते हैं। इस स्थान के दोहरे के सकारात्मक तत्व बंधी हुई सामग्री के अनुरूप हैं के मूल्य के साथ पर अभिन्न द्वारा दिया गया इसी तरह कोई अनिवार्य रूप से बंधे हुए कार्यों का स्थान बना सकता है, आवश्यक उच्चतम द्वारा दिए गए मानदंड के साथ, और इस स्थान के दोहरे के सकारात्मक तत्व बाध्य सामग्री द्वारा दिए जाते हैं जो माप 0 के सेट पर गायब हो जाते हैं।
किसी सामग्री से माप का निर्माण
किसी सामग्री से माप μ बनाने के कई तरीके हैं एक टोपोलॉजिकल स्पेस पर। यह खंड स्थानीय रूप से कॉम्पैक्ट हौसडॉर्फ रिक्त स्थान के लिए एक ऐसी विधि देता है जैसे कि सामग्री को सभी कॉम्पैक्ट सबसेट पर परिभाषित किया गया है। सामान्य तौर पर माप सामग्री का विस्तार नहीं है, क्योंकि सामग्री गणनात्मक रूप से योगात्मक होने में विफल हो सकती है, और सामग्री नहीं होने पर भी माप समान रूप से शून्य हो सकता है।
पहले सामग्री को कॉम्पैक्ट सेट तक सीमित करें। यह एक कार्य देता है कॉम्पैक्ट सेट की निम्नलिखित गुणों के साथ:
- सभी कॉम्पैक्ट सेट के लिए
- कॉम्पैक्ट सेट के सभी जोड़े के लिए
- असंयुक्त कॉम्पैक्ट सेट के सभी जोड़े के लिए।
कार्यों के उदाहरण भी हैं जैसा कि ऊपर सामग्री से निर्मित नहीं है। स्थानीय कॉम्पैक्ट समूह पर हार माप के निर्माण द्वारा एक उदाहरण दिया गया है। इस तरह के हार माप के निर्माण का एक तरीका बाएं-अपरिवर्तनीय कार्य का उत्पादन करना है ऊपर के रूप में समूह के कॉम्पैक्ट सबसेट पर, जिसे बाद में बाएं-अपरिवर्तनीय माप तक बढ़ाया जा सकता है।
खुले सेट पर परिभाषा
ऊपर दिए गए λ को देखते हुए, हम सभी खुले सेटों पर एक फ़ंक्शन μ परिभाषित करते हैं
इसके निम्नलिखित गुण हैं:
- खुले सेट के किसी भी संग्रह के लिए
- असंयुक्त खुले सेट के किसी भी संग्रह के लिए।
सभी सेटों पर परिभाषा
ऊपर दिए गए μ के रूप में, हम फ़ंक्शन μ को टोपोलॉजिकल स्पेस के सभी सबसेट तक बढ़ाते हैं
यह एक बाहरी माप है, दूसरे शब्दों में इसके निम्नलिखित गुण हैं:
- सेट के किसी भी गणनीय संग्रह के लिए।
माप का निर्माण
उपरोक्त फ़ंक्शन μ सभी उपसमूहों के परिवार पर एक बाहरी उपाय है। इसलिए यह एक उपाय बन जाता है जब बाहरी माप के लिए मापने योग्य सबसेट तक सीमित होता है, जो सबसेट होते हैं ऐसा है कि सभी उपसमूहों के लिए यदि स्थान स्थानीय रूप से सघन है तो इस माप के लिए प्रत्येक खुले सेट को मापा जा सकता है।
पैमाना सामग्री के साथ जरूरी नहीं है कॉम्पैक्ट सेट पर, हालांकि यह करता है इस अर्थ में नियमित है कि किसी भी कॉम्पैक्ट के लिए की जानकारी है कॉम्पैक्ट सेट के लिए युक्त उनके अंदरूनी हिस्सों में।
यह भी देखें
संदर्भ
- Elstrodt, Jürgen (2018), Maß- und Integrationstheorie, Springer-Verlag
- Halmos, Paul (1950), Measure Theory, Van Nostrand and Co.
- Mayrhofer, Karl (1952), Inhalt und Mass (Content and measure), Springer-Verlag, MR 0053185