लोरेंत्ज़ समष्टि: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[गणितीय विश्लेषण]] में, 1950 के दशक में जॉर्ज जी लोरेंत्ज़ द्वारा प्रस्तुत किया गया लोरेंत्ज़ स्थान,<ref>G. Lorentz, "Some new function spaces", ''Annals of Mathematics'' '''51''' (1950), pp. 37-55.</ref><ref>G. Lorentz, "On the theory of spaces Λ", ''Pacific Journal of Mathematics'' '''1''' (1951), pp. 411-429.</ref> अधिक परिचित एलपी स्पेस के सामान्यीकरण हैं<math>L^{p}</math> रिक्त स्थान।
[[गणितीय विश्लेषण]] में, 1950 के दशक में [[जॉर्ज जी लोरेंत्ज़]] द्वारा प्रस्तुत किया गया लोरेंत्ज़ अंतरिक्ष,<ref>G. Lorentz, "Some new function spaces", ''Annals of Mathematics'' '''51''' (1950), pp. 37-55.</ref><ref>G. Lorentz, "On the theory of spaces Λ", ''Pacific Journal of Mathematics'' '''1''' (1951), pp. 411-429.</ref> अधिक सामान्य <math>L^{p}</math> [[अंतरिक्षों]] का सामान्यीकरण है।


लोरेंत्ज़ रिक्त स्थान द्वारा निरूपित किया जाता है <math>L^{p,q}</math>. की तरह <math>L^{p}</math> रिक्त स्थान, वे एक मानक (गणित) (तकनीकी रूप से एक [[ quesinorm ]]) की विशेषता है जो किसी फ़ंक्शन के आकार के बारे में जानकारी को एन्कोड करता है, जैसे कि <math>L^{p}</math> मानदंड करता है। किसी फलन के आकार की दो बुनियादी गुणात्मक धारणाएँ हैं: फलन का ग्राफ़ कितना लंबा है, और यह कितना फैला हुआ है। लोरेंट्ज़ मानदंड दोनों गुणों पर सख्त नियंत्रण प्रदान करते हैं <math>L^{p}</math> मानदंड, दोनों रेंज में माप को घातांकी रूप से पुनः स्केल करके (<math>p</math>) और डोमेन (<math>q</math>). लोरेंत्ज़ मानदंड, जैसे <math>L^{p}</math> मानदंड, किसी फलन के मूल्यों की मनमानी पुनर्व्यवस्था के तहत अपरिवर्तनीय हैं।
लोरेंत्ज़ अंतरिक्ष <math>L^{p,q}</math> द्वारा निरूपित किया जाता है।  <math>L^{p}</math> अंतरिक्ष की तरह, वे एक [[मानदंड]] (तकनीकी रूप से एक [[ quesinorm |क्वासिनॉर्म]]) की विशेषता रखते है जो किसी फलन के <nowiki>''आकार''</nowiki> के बारे में जानकारी को एन्कोड करता है, जैसे कि <math>L^{p}</math> मानदंड करता है। किसी फलन के <nowiki>''</nowiki>आकार<nowiki>''</nowiki> की दो मूलभूत गुणात्मक धारणाएँ हैं: फलन का ग्राफ़ कितना लंबा है, और यह कितना फैला हुआ है। श्रेणी (<math>p</math>)  और प्रक्षेत्र (<math>q</math>) दोनों में माप को घातीय रूप से कम करके, लोरेंत्ज़ मानदंड <math>L^{p}</math> मानदंडों की तुलना में दोनों गुणों पर सख्त नियंत्रण प्रदान करते हैं। लोरेंत्ज़ मानदंड, <math>L^{p}</math> मानदंडों की तरह, एक फलन के मानो की स्वेच्छ पुनर्व्यवस्था के तहत अपरिवर्तनीय हैं।


== परिभाषा ==
== परिभाषा ==

Revision as of 22:16, 30 May 2023

गणितीय विश्लेषण में, 1950 के दशक में जॉर्ज जी लोरेंत्ज़ द्वारा प्रस्तुत किया गया लोरेंत्ज़ अंतरिक्ष,[1][2] अधिक सामान्य अंतरिक्षों का सामान्यीकरण है।

लोरेंत्ज़ अंतरिक्ष द्वारा निरूपित किया जाता है। अंतरिक्ष की तरह, वे एक मानदंड (तकनीकी रूप से एक क्वासिनॉर्म) की विशेषता रखते है जो किसी फलन के ''आकार'' के बारे में जानकारी को एन्कोड करता है, जैसे कि मानदंड करता है। किसी फलन के ''आकार'' की दो मूलभूत गुणात्मक धारणाएँ हैं: फलन का ग्राफ़ कितना लंबा है, और यह कितना फैला हुआ है। श्रेणी () और प्रक्षेत्र () दोनों में माप को घातीय रूप से कम करके, लोरेंत्ज़ मानदंड मानदंडों की तुलना में दोनों गुणों पर सख्त नियंत्रण प्रदान करते हैं। लोरेंत्ज़ मानदंड, मानदंडों की तरह, एक फलन के मानो की स्वेच्छ पुनर्व्यवस्था के तहत अपरिवर्तनीय हैं।

परिभाषा

माप स्थान पर लोरेंत्ज़ स्थान जटिल-मूल्यवान मापने योग्य कार्यों का स्थान है X पर इस प्रकार है कि निम्नलिखित क्वासिनॉर्म परिमित है

कहाँ और . इस प्रकार, कब ,

और जब ,

यह सेट करने के लिए भी पारंपरिक है .

घटती व्यवस्था

फ़ंक्शन के मानों को पुनर्व्यवस्थित करने के तहत क्वासिनॉर्म अपरिवर्तनीय है अनिवार्य रूप से परिभाषा के अनुसार। विशेष रूप से, एक जटिल-मूल्यवान औसत दर्जे का कार्य दिया गया माप स्थान पर परिभाषित, , इसका घटता पुनर्व्यवस्था समारोह, के रूप में परिभाषित किया जा सकता है

कहाँ का तथाकथित वितरण कार्य है , द्वारा दिए गए

यहाँ, सांकेतिक सुविधा के लिए, होना परिभाषित किया गया है .

दो कार्य और समतुल्य हैं, जिसका अर्थ है

कहाँ वास्तविक रेखा पर Lebesgue माप है। संबंधित सममित ह्रासमान पुनर्व्यवस्था फलन, जिसके साथ समतुल्य भी है , द्वारा वास्तविक रेखा पर परिभाषित किया जाएगा

इन परिभाषाओं को देखते हुए, के लिए और , लोरेंत्ज़ क्वासिनॉर्म द्वारा दिए गए हैं


लोरेंत्ज़ अनुक्रम रिक्त स्थान

कब (गिनती माप चालू है ), परिणामी लोरेंत्ज़ स्थान एक अनुक्रम स्थान है। हालांकि, इस मामले में विभिन्न संकेतन का उपयोग करना सुविधाजनक है।

परिभाषा।

के लिए (या जटिल मामले में), चलो के लिए पी-नॉर्म को निरूपित करें और ∞-आदर्श। द्वारा निरूपित करें परिमित पी-नॉर्म के साथ सभी अनुक्रमों का बानाच स्थान। होने देना संतोषजनक सभी अनुक्रमों का बानाच स्थान , ∞-आदर्श के साथ संपन्न। द्वारा निरूपित करें केवल सूक्ष्म रूप से कई अशून्य प्रविष्टियों के साथ सभी अनुक्रमों का आदर्श स्थान। ये सभी स्थान लोरेंत्ज़ अनुक्रम रिक्त स्थान की परिभाषा में एक भूमिका निभाते हैं नीचे।

होने देना संतोषजनक सकारात्मक वास्तविक संख्याओं का अनुक्रम बनें , और मानदंड परिभाषित करें . लोरेंत्ज़ अनुक्रम स्थान सभी अनुक्रमों के बनच स्थान के रूप में परिभाषित किया गया है जहां यह मानदंड परिमित है। समान रूप से, हम परिभाषित कर सकते हैं पूरा होने के रूप में अंतर्गत .

गुण

लोरेंत्ज़ रिक्त स्थान वास्तव में के सामान्यीकरण हैं रिक्त स्थान इस अर्थ में कि, किसी के लिए , , जो कैवलियरी के सिद्धांत से चलता है। आगे, एलपी स्पेस #कमजोर एलपी|कमजोर के साथ मेल खाता है . वे Quasinorm|quasi-Banach रिक्त स्थान हैं (अर्थात, अर्ध-सामान्य स्थान जो पूर्ण भी हैं) और इसके लिए आदर्श हैं और . कब , एक मानदंड से लैस है, लेकिन यह संभव नहीं है कि एक मानदंड को क्वासिनॉर्म के समतुल्य परिभाषित किया जाए , कमज़ोर अंतरिक्ष। एक ठोस उदाहरण के रूप में कि त्रिभुज असमानता विफल हो जाती है , विचार करना

किसका अर्ध-मानक एक के बराबर है, जबकि उनके योग का अर्ध-मानक चार के बराबर।

अंतरिक्ष में निहित है जब कभी भी . लोरेंत्ज़ रिक्त स्थान के बीच वास्तविक प्रक्षेप स्थान हैं और .

धारक की असमानता

कहाँ , , , और .

दोहरी जगह

अगर एक गैर-परमाणु σ-परिमित माप स्थान है, तो
(i) के लिए , या ;
(ii) के लिए , या ;
(iii) के लिए . यहाँ के लिए , के लिए , और .

परमाणु अपघटन

निम्नलिखित के लिए समकक्ष हैं .
(मैं) .
(द्वितीय) कहाँ माप के साथ, समर्थन को अलग कर दिया है , जिस पर लगभग हर जगह, और .
(iii) लगभग हर जगह, जहाँ और
(iv) कहाँ अलग समर्थन है , अशून्य माप के साथ, जिस पर लगभग हर जगह, सकारात्मक स्थिरांक हैं, और
(वी) लगभग हर जगह, जहाँ .

यह भी देखें

  • इंटरपोलेशन स्पेस
  • हार्डी-लिटिलवुड असमानता

संदर्भ

  • Grafakos, Loukas (2008), Classical Fourier analysis, Graduate Texts in Mathematics, vol. 249 (2nd ed.), Berlin, New York: Springer-Verlag, doi:10.1007/978-0-387-09432-8, ISBN 978-0-387-09431-1, MR 2445437.


टिप्पणियाँ

  1. G. Lorentz, "Some new function spaces", Annals of Mathematics 51 (1950), pp. 37-55.
  2. G. Lorentz, "On the theory of spaces Λ", Pacific Journal of Mathematics 1 (1951), pp. 411-429.

[Category:Lp spac