लोरेंत्ज़ समष्टि: Difference between revisions

From Vigyanwiki
Line 4: Line 4:


== परिभाषा ==
== परिभाषा ==
एक माप समष्टि <math>(X, \mu)</math> पर लोरेंत्ज़ समष्टि ''X'' पर सम्मिश्र-मान माप्य योग्य फलनों ''f'' का समष्टि है, जैसे कि निम्नलिखित क्वासिनॉर्म परिमित है
एक माप समष्टि <math>(X, \mu)</math> पर लोरेंत्ज़ समष्टि ''X'' पर सम्मिश्र-मान माप्य योग्य फलन ''f'' का समष्टि है, जैसे कि निम्नलिखित क्वासिनॉर्म परिमित है


:<math>\|f\|_{L^{p,q}(X,\mu)} = p^{\frac{1}{q}} \left \|t\mu\{|f|\ge t\}^{\frac{1}{p}} \right \|_{L^q \left (\mathbf{R}^+, \frac{dt}{t} \right)}
:<math>\|f\|_{L^{p,q}(X,\mu)} = p^{\frac{1}{q}} \left \|t\mu\{|f|\ge t\}^{\frac{1}{p}} \right \|_{L^q \left (\mathbf{R}^+, \frac{dt}{t} \right)}

Revision as of 15:04, 31 May 2023

गणितीय विश्लेषण में, 1950 के दशक में जॉर्ज जी लोरेंत्ज़ द्वारा प्रस्तुत किया गया लोरेंत्ज़ समष्टि,[1][2] अधिक सामान्य समष्टि का सामान्यीकरण है।

लोरेंत्ज़ समष्टि द्वारा निरूपित किया जाता है। समष्टि की तरह, वे एक मानदंड (तकनीकी रूप से एक क्वासिनॉर्म) की विशेषता रखते है जो किसी फलन के ''आकार'' के बारे में जानकारी को एन्कोड करते है, जैसे कि मानदंड करता है। किसी फलन के ''आकार'' की दो मूलभूत गुणात्मक धारणाएँ हैं: फलन का ग्राफ़ कितना लंबा है, और यह कितना फैला हुआ है। श्रेणी () और प्रक्षेत्र () दोनों में माप को घातीय रूप से कम करके, लोरेंत्ज़ मानदंड मानदंडों की तुलना में दोनों गुणों पर सख्त नियंत्रण प्रदान करते हैं। लोरेंत्ज़ मानदंड, मानदंडों की तरह, एक फलन के मानो की स्वेच्छ पुनर्व्यवस्था के तहत निश्चर हैं।

परिभाषा

एक माप समष्टि पर लोरेंत्ज़ समष्टि X पर सम्मिश्र-मान माप्य योग्य फलन f का समष्टि है, जैसे कि निम्नलिखित क्वासिनॉर्म परिमित है

जहां और . इस प्रकार, जब ,और जब ,

यह समुच्चय करने के लिए भी शर्तें है |

ह्रासमान पुनर्व्यवस्थापन

अनिवार्य रूप से परिभाषा के अनुसार, फलन के मानों को पुनर्व्यवस्थित करने के तहत क्वासिनॉर्म निश्चर है| विशेष रूप से, एक माप समष्टि पर परिभाषित एक सम्मिश्र-मान माप्य योग्य फलन दिया गया है, , इसका ह्रासमान पुनर्व्यवस्थापन फलन, के रूप में परिभाषित किया जा सकता है

जहाँ , का तथाकथित वितरण फलन है, जिसके द्वारा दिया गया है

यहाँ, सांकेतिक सुविधा के लिए, को ∞ मे परिभाषित किया गया है |

दो फलन और समतुल्य हैं, जिसका अर्थ है

जहां वास्तविक रेखा पर लेबेस्ग माप है। संबंधित सममित ह्रासमान पुनर्व्यवस्थापन फलन,जो के साथ भी समतुल्य है, को वास्तविक रेखा पर परिभाषित किया जाएगा

इन परिभाषाओं को देखते हुए, और , लोरेंत्ज़ क्वासिनॉर्म द्वारा दिए गए हैं


लोरेंत्ज़ अनुक्रम समष्टि

जब ( पर गणन माप), परिणामी लोरेंत्ज़ समष्टि एक अनुक्रम समष्टि है। हालांकि, इस स्थिति में विभिन्न संकेतन का उपयोग करना सुविधाजनक है।

परिभाषा।

(या सम्मिश्र स्थिति में) के लिए, चलो के लिए पी-मानदंड को दर्शाता है और ∞-मानक को करता है। परिमित पी-नॉर्म के साथ सभी अनुक्रमों के बानाच समष्टि को द्वारा निरूपित करें। चलो को संतुष्ट करने वाले सभी अनुक्रमों का बानाच समष्टि , ∞-नॉर्म के साथ संपन्न है। द्वारा सभी अनुक्रमों के आदर्श समष्टि को केवल परिमित रूप से कई अशून्य प्रविष्टियों के साथ निरूपित करें।ये सभी समष्टि लोरेंत्ज़ अनुक्रम समष्टि की एक भूमिका नीचे निभाते हैं।

मान लीजिए सन्तुष्ट धनात्मक वास्तविक संख्याओं का अनुक्रम बनाए , और मानदंड परिभाषित करें | लोरेंत्ज़ अनुक्रम समष्टि को सभी अनुक्रमों के बानाच समष्टि के रूप में परिभाषित किया गया है जहां यह मानदंड परिमित है। समान रूप से, हम परिभाषित कर सकते हैं के तहत के पूरा होने के रूप मेंहै |

गुण

लोरेंत्ज़ समष्टि वास्तव में समष्टि के सामान्यीकरण हैं इस अर्थ में कि, किसी भी , के लिए जो कैवेलियरी के सिद्धांत से अनुकरण करता है। इसके अलावा, निर्बल के साथ संपाती है। वे अर्ध-बनच समष्टि हैं (अर्थात, अर्ध-सामान्य समष्टि जो पूर्ण भी हैं) और और के लिए सामान्य हैं। जब , एक मानदंड से लैस है, लेकिन , निर्बल समष्टि के क्वासिनॉर्म के तुल्य मानक को परिभाषित करना संभव नहीं है। एक ठोस उदाहरण के रूप में कि त्रिभुज असमिका में विफल हो जाती है, विचार करें

जिसका अर्ध-मानक एक के बराबर है, जबकि उनके योग का अर्ध-मानक चार के बराबर है।

समष्टि में निहित होता है जब भी | लोरेंत्ज़ समष्टि के बीच वास्तविक अंतर्वेशन समष्टि और हैं |

होल्डर की असमता

जहां , , , और .

द्वैत समष्‍टि

अगर एक गैर-परमाणु σ-परिमित माप समष्‍टि है, तो
(i) के लिए , या ;
(ii) के लिए , या ;
(iii) के लिए . यहाँ के लिए , के लिए , और .

परमाणु अपघटन

निम्नलिखित के लिए तुल्य हैं|
(i) .
(ii) जहाँ ने असंयुक्त आधार दिया है, माप के साथ, जिस पर लगभग हर जगह, और .
(iii) लगभग हर जगह, जहाँ और
(iv) जहाँ का असंयुक्त आधार है, अशून्य माप के साथ, जिस पर लगभग हर जगह, और धनात्मक नियतांक हैं|
(v) लगभग हर जगह, जहाँ .

यह भी देखें

संदर्भ

  • Grafakos, Loukas (2008), Classical Fourier analysis, Graduate Texts in Mathematics, vol. 249 (2nd ed.), Berlin, New York: Springer-Verlag, doi:10.1007/978-0-387-09432-8, ISBN 978-0-387-09431-1, MR 2445437.


टिप्पणियाँ

  1. G. Lorentz, "Some new function spaces", Annals of Mathematics 51 (1950), pp. 37-55.
  2. G. Lorentz, "On the theory of spaces Λ", Pacific Journal of Mathematics 1 (1951), pp. 411-429.

[Category:Lp spac