बनच मापक: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
{{for|[[बैनाच स्पेस|बनच-स्पेस]]-मूल्यवान माप|वेक्टर माप}} | {{for|[[बैनाच स्पेस|बनच-स्पेस]]-मूल्यवान माप|वेक्टर माप}} | ||
[[माप सिद्धांत]] के गणितीय अनुशासन में, ''' | [[माप सिद्धांत]] के गणितीय अनुशासन में, '''बनच मापक''' एक निश्चित प्रकार का परिमित माप है जिसका उपयोग ज्यामितीय क्षेत्र को उन समस्याओं में औपचारिक रूप देने के लिए किया जाता है जो विकल्प के स्वयंसिद्ध हैं। | ||
परंपरागत रूप से, क्षेत्र के अंतर्ज्ञानात्मक विचारों को एक शास्त्रीय, गिनती योगात्मक माप के रूप में औपचारिक रूप दिया जाता है। यह बिना किसी परिभाषित क्षेत्र के [[गैर-मापने योग्य सेट|गैर-मापने योग्य श्रेणी']] छोड़ने का दुर्भाग्यपूर्ण प्रभाव यह है कि कुछ ज्यामितीय रूपांतरण क्षेत्र को अपरिवर्तनीय नहीं छोड़ते हैं, जो बनच-तरस्की विरोधाभास का सार है। इस समस्या को दूर करने के लिए सामान्यीकृत माप है। | परंपरागत रूप से, क्षेत्र के अंतर्ज्ञानात्मक विचारों को एक शास्त्रीय, गिनती योगात्मक माप के रूप में औपचारिक रूप दिया जाता है। यह बिना किसी परिभाषित क्षेत्र के [[गैर-मापने योग्य सेट|गैर-मापने योग्य श्रेणी']] छोड़ने का दुर्भाग्यपूर्ण प्रभाव यह है कि कुछ ज्यामितीय रूपांतरण क्षेत्र को अपरिवर्तनीय नहीं छोड़ते हैं, जो बनच-तरस्की विरोधाभास का सार है। इस समस्या को दूर करने के लिए सामान्यीकृत माप है। | ||
एक श्रेणी' पर बनच माप {{math|Ω}} एक परिमित योगात्मक माप {{math|''μ'' ≠ 0}},है, जो के प्रत्येक 'उपसमुच्चय' के लिए परिभाषित किया गया है {{math|℘(Ω)}}, और जिसका मान परिमित उपसमुच्चय पर 0 है। | एक श्रेणी' पर '''बनच माप''' {{math|Ω}} एक परिमित योगात्मक माप {{math|''μ'' ≠ 0}},है, जो के प्रत्येक 'उपसमुच्चय' के लिए परिभाषित किया गया है {{math|℘(Ω)}}, और जिसका मान परिमित उपसमुच्चय पर 0 है। | ||
Ω पर | Ω पर बनच मापक जो {0, 1} में मान लेता है, Ω पर एक '''उलम माप''' कहलाता है। | ||
जैसा कि विटाली श्रेणी' का विरोधाभास दिखाता है, बैनाच के मापों को योगात्मक रूप से जोड़ने के लिए मजबूत नहीं किया जा सकता है। | जैसा कि विटाली श्रेणी' का विरोधाभास दिखाता है, बैनाच के मापों को योगात्मक रूप से जोड़ने के लिए मजबूत नहीं किया जा सकता है। | ||
[[स्टीफन बानाच]] ने दिखाया कि [[यूक्लिडियन विमान|यूक्लिडियन प्लेन]] के लिए | [[स्टीफन बानाच]] ने दिखाया कि [[यूक्लिडियन विमान|यूक्लिडियन प्लेन]] के लिए बनच मापक को परिभाषित करना संभव है, जो सामान्य लेबेसेग माप के अनुरूप है। इसका मतलब यह है कि प्रत्येक लेबेस्ग-मापने योग्य 'उपसमुच्चय' <math>\mathbb{R}^2</math> बनच-मापने योग्य भी है, जिसका अर्थ है कि दोनों माप समान हैं।<ref>{{cite journal |last1=Banach |first1=Stefan |title=Sur le problème de la mesure |journal=Fundamenta Mathematicae |date=1923 |url=http://matwbn.icm.edu.pl/ksiazki/fm/fm4/fm412.pdf |access-date=6 March 2022}}</ref> | ||
इस माप का अस्तित्व दो आयामों में बनच-तर्स्की विरोधाभास की असंभवता को साबित करता है: यह संभव नहीं है कि परिमित लेबेस्गु माप के द्वि-आयामी श्रेणी' को सूक्ष्म रूप से कई श्रेणी में विघटित किया जा सके, जिन्हें एक अलग माप के साथ एक श्रेणी' में फिर से जोड़ा जा सकता है, क्योंकि यह बनच माप के गुणों का उल्लंघन करेगा जो लेबेस्ग माप को बढ़ाता है।<ref>{{citation|title=From Here to Infinity|first=Ian|last=Stewart|publisher=Oxford University Press|year=1996|isbn=9780192832023|page=177|url=https://books.google.com/books?id=rt_1vrQvSS8C&pg=PA177}}.</ref> | |||
==संदर्भ== | ==संदर्भ== | ||
{{reflist}} | {{reflist}} | ||
== बाहरी संबंध == | == बाहरी संबंध == | ||
* [http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Banach.html Stefan Banach bio] | * [http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Banach.html Stefan Banach bio] | ||
[[Category: उपाय (माप सिद्धांत)]] | [[Category: उपाय (माप सिद्धांत)]] | ||
Revision as of 12:23, 2 June 2023
माप सिद्धांत के गणितीय अनुशासन में, बनच मापक एक निश्चित प्रकार का परिमित माप है जिसका उपयोग ज्यामितीय क्षेत्र को उन समस्याओं में औपचारिक रूप देने के लिए किया जाता है जो विकल्प के स्वयंसिद्ध हैं।
परंपरागत रूप से, क्षेत्र के अंतर्ज्ञानात्मक विचारों को एक शास्त्रीय, गिनती योगात्मक माप के रूप में औपचारिक रूप दिया जाता है। यह बिना किसी परिभाषित क्षेत्र के गैर-मापने योग्य श्रेणी' छोड़ने का दुर्भाग्यपूर्ण प्रभाव यह है कि कुछ ज्यामितीय रूपांतरण क्षेत्र को अपरिवर्तनीय नहीं छोड़ते हैं, जो बनच-तरस्की विरोधाभास का सार है। इस समस्या को दूर करने के लिए सामान्यीकृत माप है।
एक श्रेणी' पर बनच माप Ω एक परिमित योगात्मक माप μ ≠ 0,है, जो के प्रत्येक 'उपसमुच्चय' के लिए परिभाषित किया गया है ℘(Ω), और जिसका मान परिमित उपसमुच्चय पर 0 है।
Ω पर बनच मापक जो {0, 1} में मान लेता है, Ω पर एक उलम माप कहलाता है।
जैसा कि विटाली श्रेणी' का विरोधाभास दिखाता है, बैनाच के मापों को योगात्मक रूप से जोड़ने के लिए मजबूत नहीं किया जा सकता है।
स्टीफन बानाच ने दिखाया कि यूक्लिडियन प्लेन के लिए बनच मापक को परिभाषित करना संभव है, जो सामान्य लेबेसेग माप के अनुरूप है। इसका मतलब यह है कि प्रत्येक लेबेस्ग-मापने योग्य 'उपसमुच्चय' बनच-मापने योग्य भी है, जिसका अर्थ है कि दोनों माप समान हैं।[1]
इस माप का अस्तित्व दो आयामों में बनच-तर्स्की विरोधाभास की असंभवता को साबित करता है: यह संभव नहीं है कि परिमित लेबेस्गु माप के द्वि-आयामी श्रेणी' को सूक्ष्म रूप से कई श्रेणी में विघटित किया जा सके, जिन्हें एक अलग माप के साथ एक श्रेणी' में फिर से जोड़ा जा सकता है, क्योंकि यह बनच माप के गुणों का उल्लंघन करेगा जो लेबेस्ग माप को बढ़ाता है।[2]
संदर्भ
- ↑ Banach, Stefan (1923). "Sur le problème de la mesure" (PDF). Fundamenta Mathematicae. Retrieved 6 March 2022.
- ↑ Stewart, Ian (1996), From Here to Infinity, Oxford University Press, p. 177, ISBN 9780192832023.