बनच मापक: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (7 revisions imported from alpha:बनच_मापक) |
(No difference)
|
Revision as of 10:23, 9 June 2023
माप सिद्धांत के गणितीय अनुशासन में, बनच मापक एक निश्चित प्रकार का परिमित माप है जिसका उपयोग ज्यामितीय क्षेत्र को उन समस्याओं में औपचारिक रूप देने के लिए किया जाता है जो विकल्प के स्वयंसिद्ध हैं।
परंपरागत रूप से, क्षेत्र के अंतर्ज्ञानात्मक विचारों को एक शास्त्रीय, गिनती योगात्मक माप के रूप में औपचारिक रूप दिया जाता है। यह बिना किसी परिभाषित क्षेत्र के गैर-मापने योग्य श्रेणी' छोड़ने का दुर्भाग्यपूर्ण प्रभाव यह है कि कुछ ज्यामितीय रूपांतरण क्षेत्र को अपरिवर्तनीय नहीं छोड़ते हैं, जो बनच-तरस्की विरोधाभास का सार है। इस समस्या को दूर करने के लिए सामान्यीकृत माप है।
एक श्रेणी' पर बनच माप Ω एक परिमित योगात्मक माप μ ≠ 0,है, जो के प्रत्येक 'उपसमुच्चय' के लिए परिभाषित किया गया है ℘(Ω), और जिसका मान परिमित उपसमुच्चय पर 0 है।
Ω पर बनच मापक जो {0, 1} में मान लेता है, Ω पर एक उलम माप कहलाता है।
जैसा कि विटाली श्रेणी' का विरोधाभास दिखाता है, बैनाच के मापों को योगात्मक रूप से जोड़ने के लिए मजबूत नहीं किया जा सकता है।
स्टीफन बानाच ने दिखाया कि यूक्लिडियन प्लेन के लिए बनच मापक को परिभाषित करना संभव है, जो सामान्य लेबेसेग माप के अनुरूप है। इसका मतलब यह है कि प्रत्येक लेबेस्ग-मापने योग्य 'उपसमुच्चय' बनच-मापने योग्य भी है, जिसका अर्थ है कि दोनों माप समान हैं।[1]
इस माप का अस्तित्व दो आयामों में बनच-तर्स्की विरोधाभास की असंभवता को साबित करता है: यह संभव नहीं है कि परिमित लेबेस्गु माप के द्वि-आयामी श्रेणी' को सूक्ष्म रूप से कई श्रेणी में विघटित किया जा सके, जिन्हें एक अलग माप के साथ एक श्रेणी' में फिर से जोड़ा जा सकता है, क्योंकि यह बनच माप के गुणों का उल्लंघन करेगा जो लेबेस्ग माप को बढ़ाता है।[2]
संदर्भ
- ↑ Banach, Stefan (1923). "Sur le problème de la mesure" (PDF). Fundamenta Mathematicae. Retrieved 6 March 2022.
- ↑ Stewart, Ian (1996), From Here to Infinity, Oxford University Press, p. 177, ISBN 9780192832023.