चुंबकीय रेनॉल्ड्स संख्या: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 23: Line 23:




== बड़े और छोटे आर के लिए सामान्य विशेषताएँ<sub>m</sub> ==
== बड़े और छोटे R<sub>m</sub> के लिए सामान्य विशेषताएँ ==
के लिए <math>\mathrm{R}_\mathrm{m} \ll 1</math>संवहन अपेक्षाकृत महत्वहीन है, और इसलिए
<math>\mathrm{R}_\mathrm{m} \ll 1</math> के लिए संवहन अपेक्षाकृत महत्वहीन है, और इसलिए चुंबकीय क्षेत्र प्रवाह के बजाय सीमा स्थितियों द्वारा निर्धारित विशुद्ध रूप से विसरित अवस्था की ओर शिथिल हो जाएगा।
चुंबकीय क्षेत्र प्रवाह के बजाय सीमा स्थितियों द्वारा निर्धारित विशुद्ध रूप से विसरित अवस्था की ओर शिथिल हो जाएगा।


के लिए <math>\mathrm{R}_\mathrm{m} \gg 1</math>, प्रसार लंबाई के पैमाने एल पर अपेक्षाकृत महत्वहीन है। चुंबकीय क्षेत्र की प्रवाह रेखाएं तब द्रव प्रवाह के साथ विकसित होती हैं, जब तक कि ग्रेडियेंट कम लंबाई के पैमाने के क्षेत्रों में केंद्रित नहीं हो जाते हैं, तब तक प्रसार संवहन को संतुलित कर सकता है।
<math>\mathrm{R}_\mathrm{m} \gg 1</math>, के लिए प्रसार लंबाई के पैमाने एल पर अपेक्षाकृत महत्वहीन है। चुंबकीय क्षेत्र की प्रवाह रेखाएं तब द्रव प्रवाह के साथ विकसित होती हैं, जब तक कि ग्रेडिएंट के रूप में नहीं कम लंबाई के पैमाने के क्षेत्रों में केंद्रित हैं जो प्रसार संवहन को संतुलित कर सकते हैं।


== मूल्यों की सीमा ==
== मूल्यों की सीमा ==

Revision as of 10:06, 8 June 2023

मैग्नेटोहाइड्रोडायनामि में, चुंबकीय रेनॉल्ड्स संख्या (आरएम) एक आयाम रहित मात्रा है जो चुंबकीय प्रसार के लिए एक संवाहक माध्यम की गति से चुंबकीय क्षेत्र के संवहन या प्रेरण समीकरण के सापेक्ष प्रभावों का अनुमान लगाती है। यह द्रव यांत्रिकी में रेनॉल्ड्स संख्या का चुंबकीय एनालॉग है और आमतौर पर इसके द्वारा परिभाषित किया जाता है:

जहाँ

  • प्रवाह का एक विशिष्ट वेग पैमाना है,
  • प्रवाह का एक विशिष्ट लंबाई पैमाना है,
  • चुंबकीय प्रसार है।

तंत्र जिसके द्वारा एक प्रवाहकीय द्रव की गति एक चुंबकीय क्षेत्र उत्पन्न करती है, डायनेमो सिद्धांत का विषय है। जब चुंबकीय रेनॉल्ड्स संख्या बहुत बड़ी होती है, हालांकि, प्रसार और डायनेमो कम चिंता का विषय होते हैं, और इस मामले में फोकस अक्सर प्रवाह पर चुंबकीय क्षेत्र के प्रभाव पर निर्भर करता है।

व्युत्पत्ति

मैग्नेटोहाइड्रोडायनामिक्स के सिद्धांत में, चुंबकीय रेनॉल्ड्स संख्या को प्रेरण समीकरण से प्राप्त किया जा सकता है:

जहाँ

  • चुंबकीय क्षेत्र है,
  • द्रव वेग है,
  • चुंबकीय प्रसार है।

दायीं ओर का पहला शब्द प्लाज्मा में चुंबकीय प्रेरण से होने वाले प्रभावों के लिए है और दूसरा शब्द चुंबकीय प्रसार से होने वाले प्रभावों के लिए है। इन दो शब्दों का सापेक्षिक महत्व उनके अनुपात, चुंबकीय रेनॉल्ड्स संख्या को लेकर पाया जा सकता है . यदि यह मान लिया जाए कि दोनों पद पैमाने की लंबाई साझा करते हैं ऐसा है कि और स्केल वेग ऐसा है कि , प्रेरण शब्द के रूप में लिखा जा सकता है

और प्रसार शब्द के रूप में

इसलिए दो शर्तों का अनुपात है


बड़े और छोटे Rm के लिए सामान्य विशेषताएँ

के लिए संवहन अपेक्षाकृत महत्वहीन है, और इसलिए चुंबकीय क्षेत्र प्रवाह के बजाय सीमा स्थितियों द्वारा निर्धारित विशुद्ध रूप से विसरित अवस्था की ओर शिथिल हो जाएगा।

, के लिए प्रसार लंबाई के पैमाने एल पर अपेक्षाकृत महत्वहीन है। चुंबकीय क्षेत्र की प्रवाह रेखाएं तब द्रव प्रवाह के साथ विकसित होती हैं, जब तक कि ग्रेडिएंट के रूप में नहीं कम लंबाई के पैमाने के क्षेत्रों में केंद्रित हैं जो प्रसार संवहन को संतुलित कर सकते हैं।

मूल्यों की सीमा

सूर्य विशाल है और उसका आकार बड़ा है , क्रम 106</उप>।[citation needed] विघटनकारी प्रभाव आम तौर पर छोटे होते हैं, और प्रसार के खिलाफ चुंबकीय क्षेत्र को बनाए रखने में कोई कठिनाई नहीं होती है।

पृथ्वी के लिए, क्रम 10 होने का अनुमान है3</उप> .[1] अपव्यय अधिक महत्वपूर्ण है, लेकिन एक चुंबकीय क्षेत्र तरल लोहे के बाहरी कोर में गति द्वारा समर्थित है। सौर मंडल में ऐसे अन्य निकाय हैं जिनमें कार्यशील डायनेमो हैं, उदा। बृहस्पति, शनि और बुध, और अन्य जो ऐसा नहीं करते, उदा. मंगल, शुक्र और चंद्रमा।

मानव लंबाई का पैमाना बहुत छोटा होता है इसलिए आमतौर पर . पारा या तरल सोडियम का उपयोग करके केवल कुछ मुट्ठी भर बड़े प्रयोगों में एक प्रवाहकीय द्रव की गति से चुंबकीय क्षेत्र का निर्माण प्राप्त किया गया है। [2][3][4]


सीमा

ऐसी स्थितियों में जहां स्थायी चुंबकीयकरण संभव नहीं है, उदा. चुंबकीय क्षेत्र बनाए रखने के लिए क्यूरी तापमान से ऊपर इतना बड़ा होना चाहिए कि प्रेरण प्रसार से अधिक हो। यह वेग का पूर्ण परिमाण नहीं है जो प्रेरण के लिए महत्वपूर्ण है, बल्कि सापेक्ष अंतर और प्रवाह में कर्तन, जो चुंबकीय क्षेत्र रेखाओं को फैलाते और मोड़ते हैं .[5] इसलिए इस मामले में चुंबकीय रेनॉल्ड्स संख्या के लिए एक अधिक उपयुक्त रूप है

जहाँ S विकृति का माप है। सबसे प्रसिद्ध परिणामों में से एक बैकस के कारण है [6] जो न्यूनतम बताता है एक क्षेत्र में प्रवाह द्वारा एक चुंबकीय क्षेत्र की पीढ़ी के लिए ऐसा है

कहाँ गोले की त्रिज्या है और अधिकतम तनाव दर है। प्रॉक्टर द्वारा इस सीमा में लगभग 25% सुधार किया गया है।[7] प्रवाह द्वारा चुंबकीय क्षेत्र की पीढ़ी के कई अध्ययन कम्प्यूटेशनल-सुविधाजनक आवधिक घन पर विचार करते हैं। इस मामले में न्यूनतम पाया गया है[8]

कहाँ लंबाई के किनारों के साथ स्केल किए गए डोमेन पर रूट-माध्य-स्क्वायर तनाव है . यदि घन में छोटी लंबाई के पैमानों पर अपरूपण की मनाही है, तब न्यूनतम है, कहाँ मूल-माध्य-वर्ग मान है।

== रेनॉल्ड्स संख्या और पेक्लेट संख्या == से संबंध चुंबकीय रेनॉल्ड्स संख्या का पेक्लेट संख्या और रेनॉल्ड्स संख्या दोनों के समान रूप है। इन तीनों को एक विशेष भौतिक क्षेत्र के लिए विवर्तनिक प्रभावों के विशेषण के अनुपात के रूप में माना जा सकता है और एक वेग के उत्पाद का रूप और एक विसारकता से विभाजित लंबाई है। जबकि चुंबकीय रेनॉल्ड्स संख्या एक मैग्नेटोहाइड्रोडायनामिक प्रवाह में चुंबकीय क्षेत्र से संबंधित है, रेनॉल्ड्स संख्या स्वयं द्रव वेग से संबंधित है और पेलेट संख्या गर्मी से संबंधित है। आयाम रहित समूह संबंधित गवर्निंग समीकरणों के गैर-आयामीकरण में उत्पन्न होते हैं: प्रेरण समीकरण, नेवियर-स्टोक्स समीकरण, और गर्मी समीकरण।

एडी करंट ब्रेकिंग से संबंध

आयाम रहित चुंबकीय रेनॉल्ड्स संख्या, , उन मामलों में भी प्रयोग किया जाता है जहां कोई भौतिक द्रव शामिल नहीं है।

× (विशेषता लंबाई) × (विशेषता वेग)
कहाँ
चुंबकीय पारगम्यता है
विद्युत चालकता है।

के लिए त्वचा का प्रभाव नगण्य है और एड़ी वर्तमान ब्रेक टॉर्क एक इंडक्शन मोटर के सैद्धांतिक वक्र का अनुसरण करता है।

के लिए त्वचा का प्रभाव हावी होता है और इंडक्शन मोटर मॉडल द्वारा भविष्यवाणी की तुलना में बढ़ती गति के साथ ब्रेकिंग टॉर्क बहुत धीमा हो जाता है।[9]


यह भी देखें

संदर्भ

  1. Davies, C.; et al. (2015). "पृथ्वी के कोर की गतिशीलता और विकास पर भौतिक गुणों से बाधाएं" (PDF). Nature Geoscience. 8 (9): 678–685. Bibcode:2015NatGe...8..678D. doi:10.1038/ngeo2492.
  2. Gailitis, A.; et al. (2001). "रीगा डायनेमो प्रयोग में चुंबकीय क्षेत्र संतृप्ति". Physical Review Letters. 86 (14): 3024–3027. arXiv:physics/0010047. Bibcode:2001PhRvL..86.3024G. doi:10.1103/PhysRevLett.86.3024. PMID 11290098. S2CID 638748.
  3. Steiglitz, R.; U. Muller (2001). "सजातीय दो-स्तरीय डायनेमो का प्रायोगिक प्रदर्शन". Physics of Fluids. 13 (3): 561–564. Bibcode:2001PhFl...13..561S. doi:10.1063/1.1331315.
  4. Moncheaux, R.; et al. (2007). "तरल सोडियम के अशांत प्रवाह में डायनेमो एक्शन द्वारा एक चुंबकीय क्षेत्र का निर्माण". Physical Review Letters. 98 (4): 044502. arXiv:physics/0701075. Bibcode:2007PhRvL..98d4502M. doi:10.1103/PhysRevLett.98.044502. PMID 17358779. S2CID 21114816.
  5. Moffatt, K. (2000). "मैग्नेटोहाइड्रोडायनामिक्स पर विचार" (PDF): 347–391. {{cite journal}}: Cite journal requires |journal= (help)
  6. Backus, G. (1958). "आत्मनिर्भर विघटनकारी गोलाकार डायनेमो का एक वर्ग". Ann. Phys. 4 (4): 372–447. Bibcode:1958AnPhy...4..372B. doi:10.1016/0003-4916(58)90054-X.
  7. Proctor, M. (1977). "संचालन क्षेत्र में डायनेमो क्रिया के लिए बैकस की आवश्यक शर्त पर". Geophysical & Astrophysical Fluid Dynamics. 9 (1): 89–93. Bibcode:1977GApFD...9...89P. doi:10.1080/03091927708242317.
  8. Willis, A. (2012). "चुंबकीय डायनेमो का अनुकूलन". Physical Review Letters. 109 (25): 251101. arXiv:1209.1559. Bibcode:2012PhRvL.109y1101W. doi:10.1103/PhysRevLett.109.251101. PMID 23368443. S2CID 23466555.
  9. Ripper, M.D; Endean, V.G (Mar 1975). "एक मोटी तांबे की डिस्क पर एड़ी-वर्तमान ब्रेकिंग-टोक़ माप". Proc IEE. 122 (3): 301–302. doi:10.1049/piee.1975.0080.


अग्रिम पठन