मानांकन (माप सिद्धांत): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 12: Line 12:
\end{array}
\end{array}
</math>
</math>
परिभाषा तुरंत एक मानांकन और एक माप के बीच के संबंध को दिखाती है: दो गणितीय वस्तु के गुण अक्सर बहुत समान होते हैं यदि समान नहीं है तो, केवल अंतर यह है कि माप का डोमेन दिए गए सांस्थितिक समष्टि का [[बोरेल बीजगणित]] है, जबकि मानांकन का डोमेन ओपन सेट का वर्ग है। अधिक जानकारी और संदर्भ में पाया जा सकता है {{Harvnb|अल्वारेज़-मनीला|एडलाट|साहेब जहरोमी|2000}} और {{Harvnb|गौबॉल्ट-लैरेक|2005}}.
परिभाषा तुरंत एक मानांकन और एक माप के बीच के संबंध को दिखाती है: दो गणितीय वस्तु के गुण अधिकांशत: बहुत समान होते हैं यदि समान नहीं है तो, केवल अंतर यह है कि माप का डोमेन दिए गए सांस्थितिक समष्टि का [[बोरेल बीजगणित]] है, जबकि मानांकन का डोमेन ओपन सेट का वर्ग है। अधिक जानकारी और संदर्भ में पाया जा सकता है {{Harvnb|अल्वारेज़-मनीला|एडलाट|साहेब जहरोमी|2000}} और {{Harvnb|गौबॉल्ट-लैरेक|2005}}.


=== सतत मानांकन ===
=== सतत मानांकन ===
एक मानांकन (जैसा कि डोमेन सिद्धांत/माप सिद्धांत में परिभाषित किया गया है) को निरंतर कहा जाता है यदि 'हर निर्देशित परिवार' के लिए <math> \scriptstyle \{U_i\}_{i\in I} </math> [[खुले सेट]] का (अर्थात खुले सेटों का एक [[अनुक्रमित परिवार]] जो इस अर्थ में भी निर्देशित है कि प्रत्येक जोड़े के सूचकांक के लिए <math>i</math> और <math>j</math> [[ सूचकांक सेट ]] से संबंधित <math> I </math>, एक सूचकांक मौजूद है <math>k</math> ऐसा है कि <math>\scriptstyle U_i\subseteq U_k</math> और <math>\scriptstyle U_j\subseteq U_k</math>) निम्नलिखित [[समानता (गणित)]] रखती है:
एक मानांकन (जैसा कि डोमेन सिद्धांत/माप सिद्धांत में परिभाषित किया गया है) को निरंतर कहा जाता है यदि 'हर निर्देशित परिवार' के लिए <math> \scriptstyle \{U_i\}_{i\in I} </math> [[खुले सेट]] का (अर्थात खुले सेटों का एक [[अनुक्रमित परिवार]] जो इस अर्थ में भी निर्देशित है कि प्रत्येक जोड़े के सूचकांक के लिए <math>i</math> और <math>j</math> [[ सूचकांक सेट ]] से संबंधित <math> I </math>, एक सूचकांक सम्मलित है <math>k</math> ऐसा है कि <math>\scriptstyle U_i\subseteq U_k</math> और <math>\scriptstyle U_j\subseteq U_k</math>) निम्नलिखित [[समानता (गणित)]] रखती है:
<math display=block>v\left(\bigcup_{i\in I}U_i\right) = \sup_{i\in I} v(U_i).</math>
<math display=block>v\left(\bigcup_{i\in I}U_i\right) = \sup_{i\in I} v(U_i).</math>
यह संपत्ति उपायों की τ-योज्यता के अनुरूप है।
यह संपत्ति उपायों की τ-योज्यता के अनुरूप है।
Line 22: Line 22:
एक मानांकन (जैसा कि डोमेन सिद्धांत/माप सिद्धांत में परिभाषित किया गया है) को सरल कहा जाता है यदि यह [[गैर-नकारात्मक संख्या]] के साथ एक [[परिमित सेट]] [[रैखिक संयोजन]] है। गणना के गैर-नकारात्मक गुणांक (माप सिद्धांत) #डिराक मानांकन है:
एक मानांकन (जैसा कि डोमेन सिद्धांत/माप सिद्धांत में परिभाषित किया गया है) को सरल कहा जाता है यदि यह [[गैर-नकारात्मक संख्या]] के साथ एक [[परिमित सेट]] [[रैखिक संयोजन]] है। गणना के गैर-नकारात्मक गुणांक (माप सिद्धांत) #डिराक मानांकन है:
<math display=block>v(U)=\sum_{i=1}^n a_i\delta_{x_i}(U)\quad\forall U\in\mathcal{T}</math>
<math display=block>v(U)=\sum_{i=1}^n a_i\delta_{x_i}(U)\quad\forall U\in\mathcal{T}</math>
जहाँ <math>a_i</math> सभी सूचकांकों के लिए हमेशा [[शून्य]] से अधिक या कम से कम बराबर होता है <math>i</math>. उपरोक्त अर्थों में सरल मानांकन स्पष्ट रूप से निरंतर हैं। साधारण मानांकनों के एक निर्देशित परिवार का सर्वोच्च (अर्थात साधारण मानांकनों का एक अनुक्रमित परिवार जो इस अर्थ में भी निर्देशित होता है कि प्रत्येक जोड़े के सूचकांक के लिए <math>i</math> और <math>j</math> सूचकांक सेट से संबंधित <math> I </math>, एक सूचकांक मौजूद है <math>k</math> ऐसा है कि <math>\scriptstyle v_i(U)\leq v_k(U)\!</math> और <math>\scriptstyle v_j(U)\leq v_k(U)\!</math>) अर्ध-सरल मानांकन कहा जाता है
जहाँ <math>a_i</math> सभी सूचकांकों के लिए हमेशा [[शून्य]] से अधिक या कम से कम बराबर होता है <math>i</math>. उपरोक्त अर्थों में सरल मानांकन स्पष्ट रूप से निरंतर हैं। साधारण मानांकनों के एक निर्देशित परिवार का सर्वोच्च (अर्थात साधारण मानांकनों का एक अनुक्रमित परिवार जो इस अर्थ में भी निर्देशित होता है कि प्रत्येक जोड़े के सूचकांक के लिए <math>i</math> और <math>j</math> सूचकांक सेट से संबंधित <math> I </math>, एक सूचकांक सम्मलित है <math>k</math> ऐसा है कि <math>\scriptstyle v_i(U)\leq v_k(U)\!</math> और <math>\scriptstyle v_j(U)\leq v_k(U)\!</math>) अर्ध-सरल मानांकन कहा जाता है
<math display=block>\bar{v}(U) = \sup_{i\in I}v_i(U) \quad \forall U\in \mathcal{T}.\,</math>
<math display=block>\bar{v}(U) = \sup_{i\in I}v_i(U) \quad \forall U\in \mathcal{T}.\,</math>




=== यह भी देखें ===
=== यह भी देखें ===
* किसी दिए गए मानांकन के लिए विस्तार की समस्या (डोमेन सिद्धांत/माप सिद्धांत के अर्थ में) में यह पता लगाना शामिल है कि किस प्रकार की स्थितियों के तहत इसे एक उचित सांस्थितिक समष्टि पर माप के लिए बढ़ाया जा सकता है, जो एक ही स्थान हो सकता है या नहीं भी हो सकता है यह परिभाषित किया गया है: कागजात {{Harvnb|अल्वारेज़-मनीला|एडलाट|साहेब जहरोमी|2000}} और {{Harvnb|गौबॉल्ट-लैरेक|2005}} संदर्भ खंड में इस उद्देश्य के लिए समर्पित हैं और कई ऐतिहासिक विवरण भी देते हैं।
* किसी दिए गए मानांकन के लिए विस्तार की समस्या (डोमेन सिद्धांत/माप सिद्धांत के अर्थ में) में यह पता लगाना सम्मलित है कि किस प्रकार की स्थितियों के अनुसार इसे एक उचित सांस्थितिक समष्टि पर माप के लिए बढ़ाया जा सकता है, जो एक ही स्थान हो सकता है या नहीं भी हो सकता है यह परिभाषित किया गया है: कागजात {{Harvnb|अल्वारेज़-मनीला|एडलाट|साहेब जहरोमी|2000}} और {{Harvnb|गौबॉल्ट-लैरेक|2005}} संदर्भ खंड में इस उद्देश्य के लिए समर्पित हैं और कई ऐतिहासिक विवरण भी देते हैं।
* [[उत्तल [[सबसेट]]]] पर मानांकन की अवधारणा और [[ [[कई गुना]] ]] पर मानांकन, डोमेन सिद्धांत/माप सिद्धांत के अर्थ में मानांकन का एक सामान्यीकरण है। उत्तल सेटों पर एक मानांकन को [[जटिल संख्या]] मानने की अनुमति है, और अंतर्निहित सांस्थितिक समष्टि गैर-रिक्त सेट का सेट है। दिए गए प्रसमष्‍टि के सभी [[Index.php?title=सघन उप प्रसमष्‍टि|सघन उप प्रसमष्‍टि]] के [[वर्ग (गणित)]] के एक उचित उपसमुच्चय पर परिभाषित उपाय है।{{efn|Details can be found in several [[arXiv]] [https://arxiv.org/find/grp_q-bio,grp_cs,grp_physics,grp_math,grp_nlin/1/AND+au:+Alesker+ti:+Valuations/0/1/0/all/0/1 papers] of prof. Semyon Alesker.}}
* [[उत्तल [[सबसेट]]]] पर मानांकन की अवधारणा और [[ [[कई गुना]] ]] पर मानांकन, डोमेन सिद्धांत/माप सिद्धांत के अर्थ में मानांकन का एक सामान्यीकरण है। उत्तल सेटों पर एक मानांकन को [[जटिल संख्या]] मानने की अनुमति है, और अंतर्निहित सांस्थितिक समष्टि गैर-रिक्त सेट का सेट है। दिए गए प्रसमष्‍टि के सभी [[Index.php?title=सघन उप प्रसमष्‍टि|सघन उप प्रसमष्‍टि]] के [[वर्ग (गणित)]] के एक उचित उपसमुच्चय पर परिभाषित उपाय है।{{efn|Details can be found in several [[arXiv]] [https://arxiv.org/find/grp_q-bio,grp_cs,grp_physics,grp_math,grp_nlin/1/AND+au:+Alesker+ti:+Valuations/0/1/0/all/0/1 papers] of prof. Semyon Alesker.}}



Revision as of 17:54, 1 June 2023

माप सिद्धांत में, या कम से कम डोमेन सिद्धांत के माध्यम से इसके दृष्टिकोण में, एक मानांकन एक मैप (गणित) है जो एक सांस्थितिक समष्टि के खुले सेटों के वर्ग से कुछ गुणों के साथ सकारात्मक संख्या वास्तविक संख्याओं के सेट तक अनंत है। यह एक माप (गणित) से निकटता से संबंधित एक अवधारणा है, और इस तरह, यह माप सिद्धांत, संभाव्यता सिद्धांत और सैद्धांतिक अभिकलित्र विज्ञान में अनुप्रयोग पाता है।

डोमेन/माप सिद्धांत परिभाषा

माना एक सांस्थितिक समष्टि बनें: मानांकन कोई सेट समारोह है

निम्नलिखित तीन गुणों को संतुष्ट करना है:
परिभाषा तुरंत एक मानांकन और एक माप के बीच के संबंध को दिखाती है: दो गणितीय वस्तु के गुण अधिकांशत: बहुत समान होते हैं यदि समान नहीं है तो, केवल अंतर यह है कि माप का डोमेन दिए गए सांस्थितिक समष्टि का बोरेल बीजगणित है, जबकि मानांकन का डोमेन ओपन सेट का वर्ग है। अधिक जानकारी और संदर्भ में पाया जा सकता है अल्वारेज़-मनीला, एडलाट & साहेब जहरोमी 2000 और गौबॉल्ट-लैरेक 2005.

सतत मानांकन

एक मानांकन (जैसा कि डोमेन सिद्धांत/माप सिद्धांत में परिभाषित किया गया है) को निरंतर कहा जाता है यदि 'हर निर्देशित परिवार' के लिए खुले सेट का (अर्थात खुले सेटों का एक अनुक्रमित परिवार जो इस अर्थ में भी निर्देशित है कि प्रत्येक जोड़े के सूचकांक के लिए और सूचकांक सेट से संबंधित , एक सूचकांक सम्मलित है ऐसा है कि और ) निम्नलिखित समानता (गणित) रखती है:

यह संपत्ति उपायों की τ-योज्यता के अनुरूप है।

सरल मानांकन

एक मानांकन (जैसा कि डोमेन सिद्धांत/माप सिद्धांत में परिभाषित किया गया है) को सरल कहा जाता है यदि यह गैर-नकारात्मक संख्या के साथ एक परिमित सेट रैखिक संयोजन है। गणना के गैर-नकारात्मक गुणांक (माप सिद्धांत) #डिराक मानांकन है:

जहाँ सभी सूचकांकों के लिए हमेशा शून्य से अधिक या कम से कम बराबर होता है . उपरोक्त अर्थों में सरल मानांकन स्पष्ट रूप से निरंतर हैं। साधारण मानांकनों के एक निर्देशित परिवार का सर्वोच्च (अर्थात साधारण मानांकनों का एक अनुक्रमित परिवार जो इस अर्थ में भी निर्देशित होता है कि प्रत्येक जोड़े के सूचकांक के लिए और सूचकांक सेट से संबंधित , एक सूचकांक सम्मलित है ऐसा है कि और ) अर्ध-सरल मानांकन कहा जाता है


यह भी देखें

  • किसी दिए गए मानांकन के लिए विस्तार की समस्या (डोमेन सिद्धांत/माप सिद्धांत के अर्थ में) में यह पता लगाना सम्मलित है कि किस प्रकार की स्थितियों के अनुसार इसे एक उचित सांस्थितिक समष्टि पर माप के लिए बढ़ाया जा सकता है, जो एक ही स्थान हो सकता है या नहीं भी हो सकता है यह परिभाषित किया गया है: कागजात अल्वारेज़-मनीला, एडलाट & साहेब जहरोमी 2000 और गौबॉल्ट-लैरेक 2005 संदर्भ खंड में इस उद्देश्य के लिए समर्पित हैं और कई ऐतिहासिक विवरण भी देते हैं।
  • [[उत्तल सबसेट]] पर मानांकन की अवधारणा और [[ कई गुना ]] पर मानांकन, डोमेन सिद्धांत/माप सिद्धांत के अर्थ में मानांकन का एक सामान्यीकरण है। उत्तल सेटों पर एक मानांकन को जटिल संख्या मानने की अनुमति है, और अंतर्निहित सांस्थितिक समष्टि गैर-रिक्त सेट का सेट है। दिए गए प्रसमष्‍टि के सभी सघन उप प्रसमष्‍टि के वर्ग (गणित) के एक उचित उपसमुच्चय पर परिभाषित उपाय है।[lower-alpha 1]

उदाहरण

डायराक मानांकन

माना एक सांस्थितिक समष्टि बनें, और का एक बिंदु हो :

डोमेन थ्योरी/माप थ्योरी में एक मानांकन है, जिसे पॉल डिराक मानांकन कहा जाता है। यह अवधारणा वितरण (गणित) से अपनी उत्पत्ति रखती है क्योंकि यह डिराक वितरण के मानांकन सिद्धांत के लिए एक स्पष्ट परिवर्तन है: जैसा कि ऊपर देखा गया है, डायराक मानांकन ईंट हैं #सरल मानांकन से बना है।

यह भी देखें

टिप्पणियाँ

  1. Details can be found in several arXiv papers of prof. Semyon Alesker.


उद्धृत कार्य

  • Alvarez-Manilla, Maurizio; Edalat, Abbas; Saheb-Djahromi, Nasser (2000), "An extension result for continuous valuations", Journal of the London Mathematical Society, 61 (2): 629–640, CiteSeerX 10.1.1.23.9676, doi:10.1112/S0024610700008681.
  • Goubault-Larrecq, Jean (2005), "Extensions of valuations", Mathematical Structures in Computer Science, 15 (2): 271–297, doi:10.1017/S096012950400461X

बाहरी संबंध