मध्यबिंदु-तनन बहुभुज: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[File:Midpoint stretching polygon.svg|thumb|300px|एक [[चक्रीय बहुभुज]] (हरा), इसका मध्यबिंदु बहुभुज (लाल), और इसका मध्यबिंदु-खींचने वाला बहुभुज (गुलाबी)]][[ज्यामिति]] में, चक्रीय बहुभुज का मध्यबिंदु-खींचने वाला बहुभुज {{mvar|P}} एक ही वृत्त में उत्कीर्ण हुआ अन्य चक्रीय बहुभुज है | वह बहुभुज जिसके शीर्ष (ज्यामिति) के शीर्षों के बीच वृत्ताकार चापों के [[मध्य]] बिंदु {{mvar|P}} हैं |<ref name="dhz">{{Citation |last=Ding |first=Jiu |last2=Hitt |first2=L. Richard |last3=Zhang |first3=Xin-Min |date=1 July 2003 |title=Markov chains and dynamic geometry of polygons |journal=Linear Algebra and Its Applications |volume=367 |pages=255–270 |doi=10.1016/S0024-3795(02)00634-1 |url=http://www.rhitt.com/research/markov.pdf |accessdate=19 October 2011}}.</ref> {{mvar|P}} के मध्यबिंदु बहुभुज से प्राप्त किया जा सकता है |(बहुभुज जिसके कोने किनारे मध्यबिंदु हैं) बहुभुज को इस तरह से रखकर कि वृत्त का केंद्र मूल (गणित) के साथ मेल खाता है, और मध्यबिंदु बहुभुज के प्रत्येक शीर्ष का प्रतिनिधित्व करने वाले सदिश को खींचना या सामान्य करना जिससे इसकी इकाई सदिश हो जाती है |
[[File:Midpoint stretching polygon.svg|thumb|300px|एक [[चक्रीय बहुभुज]] (हरा), इसका मध्यबिंदु बहुभुज (लाल), और इसका मध्यबिंदु-खींचने वाला बहुभुज (गुलाबी)]][[ज्यामिति]] में, चक्रीय बहुभुज का मध्यबिंदु-खींचने वाला बहुभुज {{mvar|P}} एक ही वृत्त में उत्कीर्ण हुआ अन्य चक्रीय बहुभुज है | वह बहुभुज जिसके शीर्ष (ज्यामिति) के शीर्षों के बीच वृत्ताकार चापों के [[मध्य]] बिंदु {{mvar|P}} हैं |<ref name="dhz">{{Citation |last=Ding |first=Jiu |last2=Hitt |first2=L. Richard |last3=Zhang |first3=Xin-Min |date=1 July 2003 |title=Markov chains and dynamic geometry of polygons |journal=Linear Algebra and Its Applications |volume=367 |pages=255–270 |doi=10.1016/S0024-3795(02)00634-1 |url=http://www.rhitt.com/research/markov.pdf |accessdate=19 October 2011}}.</ref> {{mvar|P}} के मध्यबिंदु बहुभुज से प्राप्त किया जा सकता है |(बहुभुज जिसके कोने किनारे मध्यबिंदु हैं) बहुभुज को इस तरह से रखकर कि वृत्त का केंद्र मूल (गणित) के साथ मेल खाता है, और मध्यबिंदु बहुभुज के प्रत्येक शीर्ष का प्रतिनिधित्व करने वाले सदिश को खींचना या सामान्य करना जिससे इसकी इकाई सदिश हो जाती है |  
 
ज्यामिति में चक्रीय बहुभुज P का मध्यबिंदु-खींचने वाला बहुभुज उसी वृत्त में


== म्यूजिकल अनुप्रयोग ==
== म्यूजिकल अनुप्रयोग ==

Revision as of 18:12, 2 June 2023

एक चक्रीय बहुभुज (हरा), इसका मध्यबिंदु बहुभुज (लाल), और इसका मध्यबिंदु-खींचने वाला बहुभुज (गुलाबी)

ज्यामिति में, चक्रीय बहुभुज का मध्यबिंदु-खींचने वाला बहुभुज P एक ही वृत्त में उत्कीर्ण हुआ अन्य चक्रीय बहुभुज है | वह बहुभुज जिसके शीर्ष (ज्यामिति) के शीर्षों के बीच वृत्ताकार चापों के मध्य बिंदु P हैं |[1] P के मध्यबिंदु बहुभुज से प्राप्त किया जा सकता है |(बहुभुज जिसके कोने किनारे मध्यबिंदु हैं) बहुभुज को इस तरह से रखकर कि वृत्त का केंद्र मूल (गणित) के साथ मेल खाता है, और मध्यबिंदु बहुभुज के प्रत्येक शीर्ष का प्रतिनिधित्व करने वाले सदिश को खींचना या सामान्य करना जिससे इसकी इकाई सदिश हो जाती है |

म्यूजिकल अनुप्रयोग

मध्यबिंदु-खींचने वाले बहुभुज को P की छाया भी कहा जाता है | जब वृत्त का उपयोग एक दोहराव वाले समय अनुक्रम का वर्णन करने के लिए किया जाता है और उस पर बहुभुज शिखर ड्रम बीट के ऑनसेट का प्रतिनिधित्व करते हैं, तो छाया उस समय के समुच्चय का प्रतिनिधित्व करती है | जब ड्रमर के हाथ उच्चतम होते हैं, और मूल लय की तुलना में अधिक से अधिक समता होती है।[2]


नियमितता में अभिसरण

नियमित बहुभुज का मध्य-बिंदु-खिंचाव बहुभुज स्वयं नियमित होता है, और इच्छानुसार प्रारंभिक बहुभुज पर मध्य-बिंदु-खिंचाव संचालन को पुनरावृत्त करने से बहुभुजों का क्रम होता है | जिसका आकार नियमित बहुभुज के रूप में परिवर्तित होता है।[1][3]


संदर्भ

  1. 1.0 1.1 Ding, Jiu; Hitt, L. Richard; Zhang, Xin-Min (1 July 2003), "Markov chains and dynamic geometry of polygons" (PDF), Linear Algebra and Its Applications, 367: 255–270, doi:10.1016/S0024-3795(02)00634-1, retrieved 19 October 2011.
  2. Gomez-Martin, Francisco; Taslakian, Perouz; Toussaint, Godfried T. (2008), "Evenness preserving operations on musical rhythms", Proceedings of the 2008 C3S2E conference (PDF), doi:10.1145/1370256.1370275.
  3. Gomez-Martin, Francisco; Taslakian, Perouz; Toussaint, Godfried T. (2008), "Convergence of the shadow sequence of inscribed polygons", 18th Fall Workshop on Computational Geometry