रव आंकड़ा: Difference between revisions

From Vigyanwiki
(text)
(text)
Line 53: Line 53:


=== अतिरिक्त रव के एक समारोह के रूप में रव कारक ===
=== अतिरिक्त रव के एक समारोह के रूप में रव कारक ===
[[File:NoiseFactorDefinition.svg|right|thumb|600px|स्रोत शक्ति का संकेत देता है <math>S_i</math> और सत्ता का रव <math>N_i</math>. संकेत और रव दोनों ही प्रवर्धित हो जाते हैं। हालाँकि, स्रोत से प्रवर्धित रव के अलावा, प्रवर्धक इसके प्रक्षेपण में अतिरिक्त रव जोड़ता है <math>N_a</math>. इसलिए, प्रवर्धक के प्रक्षेपण में एसएनआर इसके निविष्ट से कम है।]]शोर कारक को अतिरिक्त प्रक्षेपण संदर्भित रव शक्ति <math>N_a</math> और प्रवर्धक के षक्ति लब्धि <math>G</math> के एक फलन के रूप में व्यक्त किया जा सकता है।
[[File:NoiseFactorDefinition.svg|right|thumb|600px|स्रोत <math>S_i</math> शक्ति का संकेत देता है और सत्ता का रव <math>N_i</math>. संकेत और रव दोनों ही प्व, र्धित हो जाते हैं। हालाँकि, स्रोत से प्रवर्धित रव के अतिरिक्त, प्रवर्धक इसके प्रक्षेपण में <math>N_a</math> अतिरिक्त रव जोड़ता है इसलिए, प्रवर्धक के प्रक्षेपण में एसएनआर इसके निविष्ट से कम है।]]शोर कारक को अतिरिक्त प्रक्षेपण संदर्भित रव शक्ति <math>N_a</math> और प्रवर्धक के शक्ति लब्धि <math>G</math> के एक फलन के रूप में व्यक्त किया जा सकता है।
{{Equation box 1
{{Equation box 1
|indent =
|indent =
Line 74: Line 74:
सोपानित प्रणाली में <math>N_i</math> पिछले घटक के प्रक्षेपण रव को संदर्भित नहीं करता है। मानक रव तापमान पर एक निविष्ट समाप्ति अभी भी व्यक्तिगत घटक के लिए मानी जाती है। इसका अर्थ यह है कि प्रत्येक घटक द्वारा जोड़ी गई अतिरिक्त रव शक्ति अन्य घटकों से स्वतंत्र है।
सोपानित प्रणाली में <math>N_i</math> पिछले घटक के प्रक्षेपण रव को संदर्भित नहीं करता है। मानक रव तापमान पर एक निविष्ट समाप्ति अभी भी व्यक्तिगत घटक के लिए मानी जाती है। इसका अर्थ यह है कि प्रत्येक घटक द्वारा जोड़ी गई अतिरिक्त रव शक्ति अन्य घटकों से स्वतंत्र है।


== ऑप्टिकल रव आंकड़ा ==
== दृक् रव आंकड़ा ==
'''उपरोक्त विद्युत प्रणालियों में र'''व का वर्णन करता है। विद्युत स्रोत के बराबर शक्ति वर्णक्रमीय घनत्व के साथ रव उत्पन्न करते हैं {{math|''kT''}}, जहाँ {{math|''k''}} बोल्ट्जमैन स्थिरांक है और {{math|''T''}} पूर्ण तापमान है। हालाँकि, ऑप्टिकल प्रणाली में भी रव होता है। इनमें स्रोतों का कोई मौलिक रव नहीं होता है। इसके बजाय ऊर्जा परिमाणीकरण डिटेक्टर में उल्लेखनीय शॉट रव का कारण बनता है, जो रव शक्ति वर्णक्रमीय घनत्व के अनुरूप होता है {{math|''hf''}} जहाँ {{math|''h''}} प्लैंक स्थिरांक है और {{math|''f''}} ऑप्टिकल आवृत्ति है।
उपरोक्त विद्युत प्रणालियों में रव का वर्णन करता है। विद्युत स्रोत के बराबर शक्ति वर्णक्रमीय घनत्व के साथ रव {{math|''kT''}} उत्पन्न करते हैं, जहाँ {{math|''k''}} बोल्ट्जमैन स्थिरांक है और {{math|''T''}} पूर्ण तापमान है। हालाँकि, दृक् प्रणाली में भी रव होता है। इनमें स्रोतों का कोई मौलिक रव नहीं होता है। इसके स्थान पर ऊर्जा परिमाणीकरण संसूचक में उल्लेखनीय शॉट रव का कारण बनता है, जो रव शक्ति वर्णक्रमीय घनत्व {{math|''hf''}} के अनुरूप होता है, जहाँ {{math|''h''}} प्लैंक स्थिरांक है और {{math|''f''}} दृक् आवृत्ति है।


1990 के दशक में, एक ऑप्टिकल रव आंकड़ा परिभाषित किया गया है।<ref>E. Desurvire, „Erbium doped fiber amplifiers: Principles and Applications“, Wiley, New York, 1994</ref> यह कहा गया है  {{math|''F''<sub>''pnf''</sub>}} फोटॉन संख्या में उतार-चढ़ाव के लिए।<ref>H. A. Haus, "The noise figure of optical amplifiers," in IEEE Photonics Technology Letters, vol. 10, no. 11, pp. 1602-1604, Nov. 1998, doi: 10.1109/68.726763</ref> SNR और रव कारक गणना के लिए आवश्यक शक्तियाँ एक फोटोडायोड में करंट के कारण होने वाली विद्युत शक्तियाँ हैं। SNR, माध्य प्रकाशिक धारा का वर्ग है जिसे प्रकाशधारा के विचरण से विभाजित किया जाता है। मोनोक्रोमैटिक या पर्याप्त रूप से क्षीण प्रकाश में पता लगाए गए फोटॉन का पॉइसन वितरण होता है। यदि, एक पता लगाने के अंतराल के दौरान पता लगाए गए फोटॉन का अपेक्षित मूल्य है {{math|''n''}} तो विचरण भी है {{math|''n''}} और एक प्राप्त करता है {{math|''SNR''<sub>''pnf,in''</sub>}} = {{math|''n''<sup>2</sup>/''n''}} = {{math|''n''}}. बिजली लाभ के साथ एक ऑप्टिकल प्रवर्धक के पीछे {{math|''G''}} का एक माध्य होगा {{math|''Gn''}} फोटॉन। बड़े की सीमा में {{math|''n''}} फोटॉनों का विचरण है {{math|''Gn''(2''n''<sub>''sp''</sub>(''G''-1)+1)}} जहाँ {{math|''n''<sub>''sp''</sub>}} सहज उत्सर्जन कारक है। एक प्राप्त करता है {{math|''SNR''<sub>''pnf,out''</sub>}} = {{math|''G''<sup>2</sup>''n''<sup>2</sup>/(''Gn''(2''n''<sub>''sp''</sub>(''G''-1)+1))}} = {{math|''n''/(2''n''<sub>''sp''</sub>(1-1/''G'')+1/''G'')}}. परिणामी ऑप्टिकल रव कारक है {{math|''F''<sub>''pnf''</sub>}} = {{math|''SNR''<sub>''pnf,in''</sub> / ''SNR''<sub>''pnf,out''</sub>}} = {{math|2''n''<sub>''sp''</sub>(1-1/''G'')+1/''G''}}.
1990 के दशक में, एक दृक् रव आंकड़ा परिभाषित किया गया है। <ref>E. Desurvire, „Erbium doped fiber amplifiers: Principles and Applications“, Wiley, New York, 1994</ref> यह {{math|''F''<sub>''pnf''</sub>}} फोटॉन संख्या में उतार-चढ़ाव के लिए कहा गया है। <ref>H. A. Haus, "The noise figure of optical amplifiers," in IEEE Photonics Technology Letters, vol. 10, no. 11, pp. 1602-1604, Nov. 1998, doi: 10.1109/68.726763</ref> SNR और रव कारक गणना के लिए आवश्यक शक्तियाँ एक प्रकाश चालकीय डायोड में करंट के कारण होने वाली विद्युत शक्तियाँ हैं। SNR, माध्य प्रकाशिक धारा का वर्ग है जिसे प्रकाशधारा के विचरण से विभाजित किया जाता है। एकवर्णी या पर्याप्त रूप से क्षीण प्रकाश में पता लगाए गए फोटॉन का पॉइसन वितरण होता है। यदि, एक पता लगाने के अंतराल के दौरान पता लगाए गए फोटॉन का अपेक्षित मूल्य {{math|''n''}} है तो विचरण भी {{math|''n''}} है और एक {{math|''SNR''<sub>''pnf,in''</sub>}} = {{math|''n''<sup>2</sup>/''n''}} = {{math|''n''}} प्राप्त करता है। शक्ति लब्धि के साथ एक दृक् प्रवर्धक के पीछे {{math|''G''}} का एक माध्य {{math|''Gn''}} फोटॉन होगा। बड़े {{math|''Gn''(2''n''<sub>''sp''</sub>(''G''-1)+1)}} की सीमा में {{math|''n''}} फोटॉनों का विचरण है जहाँ {{math|''n''<sub>''sp''</sub>}} सहज उत्सर्जन कारक है। एक {{math|''SNR''<sub>''pnf,out''</sub>}} = {{math|''G''<sup>2</sup>''n''<sup>2</sup>/(''Gn''(2''n''<sub>''sp''</sub>(''G''-1)+1))}} = {{math|''n''/(2''n''<sub>''sp''</sub>(1-1/''G'')+1/''G'')}} प्राप्त करता है। परिणामी दृक् रव कारक {{math|''F''<sub>''pnf''</sub>}} = {{math|''SNR''<sub>''pnf,in''</sub> / ''SNR''<sub>''pnf,out''</sub>}} = {{math|2''n''<sub>''sp''</sub>(1-1/''G'')+1/''G''}} है


{{math|''F''<sub>''pnf''</sub>}} विद्युत रव कारक की तुलना में वैचारिक संघर्ष में है, जिसे अब कहा जाता है {{math|''F''<sub>''e''</sub>}}:
{{math|''F''<sub>''pnf''</sub>}} विद्युत रव कारक की तुलना में वैचारिक संघर्ष में है, जिसे अब {{math|''F''<sub>''e''</sub>}} कहा जाता है:


फोटोकरंट ऑप्टिकल पावर के समानुपाती होता है। ऑप्टिकल शक्ति एक क्षेत्र आयाम (विद्युत या चुंबकीय) के वर्गों के समानुपाती होती है। तो, गृहीता आयाम में अरैखिक है। के लिए शक्ति चाहिए {{math|''SNR''<sub>''pnf''</sub>}} गणना संकेत आयाम की चौथी शक्ति के समानुपाती होती है। लेकिन के लिए {{math|''F''<sub>''e''</sub>}} विद्युत डोमेन में शक्ति संकेत आयाम के वर्ग के समानुपाती होती है।
प्रकाश विद्युत् धारा दृक् पावर के समानुपाती होता है। दृक् शक्ति एक क्षेत्र आयाम (विद्युत या चुंबकीय) के वर्गों के समानुपाती होती है। तो, गृहीता आयाम में अरैखिक है। {{math|''SNR''<sub>''pnf''</sub>}} गणना के लिए आवश्यक शक्ति संकेत आयाम की चौथी शक्ति के समानुपाती होती है। लेकिन {{math|''F''<sub>''e''</sub>}} के लिए  विद्युत कार्यछेत्र में शक्ति संकेत आयाम के वर्ग के समानुपाती होती है।


एक निश्चित विद्युत आवृत्ति पर, संकेत के साथ चरण (I) और चतुर्भुज (Q) में रव होता है। ये दोनों चतुर्भुज विद्युत प्रवर्धक के पीछे उपलब्ध होते हैं। एक ऑप्टिकल प्रवर्धक में भी यही होता है। लेकिन माप के लिए प्रत्यक्ष पहचान फोटोगृहीता की आवश्यकता होती है {{math|''SNR''<sub>''pnf''</sub>}} मुख्य रूप से इन-फेज रव को ध्यान में रखता है जबकि उच्च के लिए क्वाडरेचर रव को उपेक्षित किया जा सकता है{{math|''n''}}. साथ ही, गृहीता केवल एक चतुर्भुज का उत्पादन करता है। तो, एक चतुर्भुज खो गया है।
एक निश्चित विद्युत आवृत्ति पर, संकेत के साथ चरण (I) और चतुर्भुज (Q) में रव होता है। ये दोनों चतुर्भुज विद्युत प्रवर्धक के पीछे उपलब्ध होते हैं। एक दृक् प्रवर्धक में भी यही होता है। लेकिन माप के लिए प्रत्यक्ष पहचान फोटोगृहीता {{math|''SNR''<sub>''pnf''</sub>}} की आवश्यकता होती है। मुख्य रूप से समकला रव को ध्यान में रखता है जबकि उच्च के लिए क्वाडरेचर रव {{math|''n''}} को उपेक्षित किया जा सकता है। साथ ही, गृहीता केवल एक चतुर्भुज का उत्पादन करता है। तो, एक चतुर्भुज खो गया है।


बड़े के साथ एक ऑप्टिकल प्रवर्धक के लिए {{math|''G''}} उसके पास होता है {{math|''F''<sub>''pnf''</sub>}} ≥ 2 जबकि एक विद्युत प्रवर्धक के लिए यह धारण करता है {{math|''F''<sub>''e''</sub>}} ≥ 1.
बड़े के साथ एक दृक् प्रवर्धक के लिए {{math|''G''}} उसके पास {{math|''F''<sub>''pnf''</sub>}} ≥ 2 होता है जबकि एक विद्युत प्रवर्धक के लिए यह {{math|''F''<sub>''e''</sub>}} ≥ 1 धारण करता है


इसके अलावा, आज के लंबी दूरी के ऑप्टिकल फाइबर संचार में सुसंगत ऑप्टिकल I&Q गृहीता का प्रभुत्व है लेकिन {{math|''F''<sub>''pnf''</sub>}} इनमें देखी गई SNR गिरावट का वर्णन नहीं करता है।
इसके अतिरिक्त, आज के लंबी दूरी के दृक् फाइबर संचार में सुसंगत दृक् I&Q गृहीता का प्रभुत्व है लेकिन {{math|''F''<sub>''pnf''</sub>}} इनमें देखी गई SNR गिरावट का वर्णन नहीं करता है।


उपरोक्त संघर्षों को ऑप्टिकल इन-फेज और क्वाडरेचर रव गुणांक द्वारा हल किया जाता है {{math|''F''<sub>''o,IQ''</sub>}}.<ref name="Noe2022">R. Noe, "Consistent Optical and Electrical Noise Figure," in Journal of Lightwave Technology, 2022, doi: 10.1109/JLT.2022.3212936, https://ieeexplore.ieee.org/document/9915356</ref> इसे सुसंगत ऑप्टिकल I&Q गृहीता का उपयोग करके मापा जा सकता है। इनमें, प्रक्षेपण संकेत की शक्ति एक ऑप्टिकल क्षेत्र आयाम के वर्ग के समानुपाती होती है क्योंकि वे आयाम में रैखिक होते हैं। वे दोनों चतुर्भुज पास करते हैं। एक ऑप्टिकल प्रवर्धक के लिए यह धारण करता है {{math|''F''<sub>''o,IQ''</sub>}} = {{math|''n''<sub>''sp''</sub>(1-1/''G'')+1/''G''}} ≥ 1. मात्रा {{math|''n''<sub>''sp''</sub>(1-1/''G'')}} प्रति मोड जोड़े गए रव फोटॉनों की निविष्ट-संदर्भित संख्या है।
उपरोक्त संघर्षों को दृक् समकला और क्वाडरेचर रव गुणांक द्वारा हल किया जाता है {{math|''F''<sub>''o,IQ''</sub>}}.<ref name="Noe2022">R. Noe, "Consistent Optical and Electrical Noise Figure," in Journal of Lightwave Technology, 2022, doi: 10.1109/JLT.2022.3212936, https://ieeexplore.ieee.org/document/9915356</ref> इसे सुसंगत दृक् I&Q गृहीता का उपयोग करके मापा जा सकता है। इनमें, प्रक्षेपण संकेत की शक्ति एक दृक् क्षेत्र आयाम के वर्ग के समानुपाती होती है क्योंकि वे आयाम में रैखिक होते हैं। वे दोनों चतुर्भुज पास करते हैं। एक दृक् प्रवर्धक के लिए यह {{math|''F''<sub>''o,IQ''</sub>}} = {{math|''n''<sub>''sp''</sub>(1-1/''G'')+1/''G''}} ≥ 1धारण करता है. मात्रा {{math|''n''<sub>''sp''</sub>(1-1/''G'')}} प्रति मोड जोड़े गए रव फोटॉनों की निविष्ट-संदर्भित संख्या है।


  {{math|''F''<sub>''o,IQ''</sub>}} और {{math|''F''<sub>''pnf''</sub>}} को आसानी से एक दूसरे में परिवर्तित किया जा सकता है। बड़े के लिए {{math|''G''}} उसके पास होता है {{math|''F''<sub>''o,IQ''</sub>}} = {{math|''F''<sub>''pnf''</sub>/2}} या, जब dB में व्यक्त किया जाता है, {{math|''F''<sub>''o,IQ''</sub>}} 3 dB से कम है {{math|''F''<sub>''pnf''</sub>}}.
  {{math|''F''<sub>''o,IQ''</sub>}} और {{math|''F''<sub>''pnf''</sub>}} को आसानी से एक दूसरे में परिवर्तित किया जा सकता है। बड़े के लिए {{math|''G''}} उसके पास {{math|''F''<sub>''o,IQ''</sub>}} = {{math|''F''<sub>''pnf''</sub>/2}} होता है या, जब dB में व्यक्त किया जाता है, {{math|''F''<sub>''o,IQ''</sub>}} 3 dB {{math|''F''<sub>''pnf''</sub>}} से कम है।


== यूनिफाइड रव गुणांक ==
== यूनिफाइड रव गुणांक ==
प्रति मोड कुल रव शक्ति वर्णक्रमीय घनत्व है {{math|''kT''}} + {{math|''hf''}}. विद्युत क्षेत्र में {{math|''hf''}} उपेक्षित किया जा सकता है। ऑप्टिकल डोमेन में {{math|''kT''}} उपेक्षित किया जा सकता है। बीच में, कहते हैं, निम्न THz या ऊष्मीय डोमेन में, दोनों पर विचार करने की आवश्यकता होगी। इलेक्ट्रिकल और ऑप्टिकल डोमेन के बीच मिश्रण करना संभव है जैसे कि एक सार्वभौमिक रव आंकड़ा प्राप्त होता है।
प्रति मोड कुल रव शक्ति वर्णक्रमीय घनत्व {{math|''kT''}} + {{math|''hf''}} है . विद्युत क्षेत्र में {{math|''hf''}} उपेक्षित किया जा सकता है। दृक् कार्यछेत्र में {{math|''kT''}} उपेक्षित किया जा सकता है। बीच में, कहते हैं, निम्न THz या ऊष्मीय कार्यछेत्र में, दोनों पर विचार करने की आवश्यकता होगी। इलेक्ट्रिकल और दृक् कार्यछेत्र के बीच मिश्रण करना संभव है जैसे कि एक सार्वभौमिक रव आंकड़ा प्राप्त होता है।


यह प्रयास एक रव फिगर द्वारा किया गया है {{math|''F''<sub>''fas''</sub>}}<ref>H. A. Haus, "Noise Figure Definition Valid From RF to Optical Frequencies," in IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 6, NO. 2, MARCH/APRIL 2000, pp. 240-247</ref> जहां सबस्क्रिप्ट आयाम वर्गों के उतार-चढ़ाव के लिए है। ऑप्टिकल आवृत्तियों पर {{math|''F''<sub>''fas''</sub>}} बराबर है {{math|''F''<sub>''pnf''</sub>}} और इसमें केवल 1 चतुर्भुज का पता लगाना सम्मिलित है। लेकिन वैचारिक अंतर {{math|''F''<sub>''e''</sub>}} पर काबू नहीं पाया जा सकता: यह असंभव लगता है कि बढ़ती आवृत्ति के लिए (इलेक्ट्रिकल से ऊष्मीय से ऑप्टिकल तक) 2 चतुर्भुज (विद्युत डोमेन में) धीरे-धीरे 1 चतुर्भुज बन जाते हैं (ऑप्टिकल गृहीता में जो निर्धारित करते हैं {{math|''F''<sub>''fas''</sub>}} या {{math|''F''<sub>''pnf''</sub>}}). आदर्श रव कारक को 1 (विद्युत) से 2 (ऑप्टिकल) तक जाने की आवश्यकता होगी, जो सहज नहीं है। एकीकरण के लिए {{math|''F''<sub>''pnf''</sub>}} साथ {{math|''F''<sub>''e''</sub>}}, संकेत एम्पलीट्यूड के वर्ग (विद्युत डोमेन में शक्तियाँ) भी धीरे-धीरे एम्पलीट्यूड (ऑप्टिकल डायरेक्ट डिटेक्शन गृहीता्स में शक्तियाँ) की चौथी शक्तियाँ बन जानी चाहिए, जो असंभव लगता है।
यह प्रयास एक रव फिगर {{math|''F''<sub>''fas''</sub>}} द्वारा किया गया है <ref>H. A. Haus, "Noise Figure Definition Valid From RF to Optical Frequencies," in IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 6, NO. 2, MARCH/APRIL 2000, pp. 240-247</ref> जहां सबस्क्रिप्ट आयाम वर्गों के उतार-चढ़ाव के लिए है। दृक् आवृत्तियों पर {{math|''F''<sub>''fas''</sub>}} बराबर है। लेकिन वैचारिक अंतर {{math|''F''<sub>''e''</sub>}} पर काबू नहीं पाया जा सकता: यह असंभव लगता है कि बढ़ती आवृत्ति के लिए (इलेक्ट्रिकल से ऊष्मीय से दृक् तक) 2 चतुर्भुज (विद्युत कार्यछेत्र में) धीरे-धीरे 1 चतुर्भुज बन जाते हैं (दृक् गृहीता में जो निर्धारित करते हैं {{math|''F''<sub>''fas''</sub>}} या {{math|''F''<sub>''pnf''</sub>}}). आदर्श रव कारक को 1 (विद्युत) से 2 (दृक्) तक जाने की आवश्यकता होगी, जो सहज नहीं है। एकीकरण के लिए {{math|''F''<sub>''pnf''</sub>}} साथ {{math|''F''<sub>''e''</sub>}}, संकेतआयाम के वर्ग (विद्युत कार्यछेत्र में शक्तियाँ) भी धीरे-धीरेआयाम (दृक् प्रत्यक्ष संसूचन गृहीता में शक्तियाँ) की चौथी शक्तियाँ बन जानी चाहिए, जो असंभव लगता है।


के लिए ऑप्टिकल और विद्युत रव के आंकड़ों का एक सुसंगत एकीकरण प्राप्त किया जाता है {{math|''F''<sub>''e''</sub>}} और {{math|''F''<sub>''o,IQ''</sub>}}. कोई विरोधाभास नहीं है क्योंकि ये दोनों वैचारिक मेल में हैं (एम्पलीट्यूड, रैखिक, 2 चतुष्कोणों के वर्गों के आनुपातिक शक्तियां, 1 के बराबर आदर्श रव कारक)। ऊष्मीय रव {{math|''kT''}} और मौलिक क्वांटम रव {{math|''hf''}} विचाराधीन है। एकीकृत रव आंकड़ा है {{math|''F''<sub>''IQ''</sub>}} = {{math|(''kTF''<sub>''e''</sub> + ''hfF''<sub>''o,IQ''</sub>) / (''kT'' + ''hf'')}} = {{math|(''kT''(''T'' + ''T''<sub>''e''</sub>)) + ''hf''(''n''<sub>''sp''</sub>(1-1/''G'')+1/''G'')) / (''kT'' + ''hf'')}}.<ref name="Noe2022" />
{{math|''F''<sub>''e''</sub>}} और {{math|''F''<sub>''o,IQ''</sub>}} के लिए दृक् और विद्युत रव के आंकड़ों का एक सुसंगत एकीकरण प्राप्त किया जाता है। कोई विरोधाभास नहीं है क्योंकि ये दोनों वैचारिक मेल में हैं (कोणांक, रैखिक, 2 चतुष्कोणों के वर्गों के आनुपातिक शक्तियां, 1 के बराबर आदर्श रव कारक)। ऊष्मीय रव {{math|''kT''}} और मौलिक क्वांटम रव {{math|''hf''}} विचाराधीन है। एकीकृत रव आंकड़ा {{math|''F''<sub>''IQ''</sub>}} = {{math|(''kTF''<sub>''e''</sub> + ''hfF''<sub>''o,IQ''</sub>) / (''kT'' + ''hf'')}} = {{math|(''kT''(''T'' + ''T''<sub>''e''</sub>)) + ''hf''(''n''<sub>''sp''</sub>(1-1/''G'')+1/''G'')) / (''kT'' + ''hf'')}} में हैं। <ref name="Noe2022" />





Revision as of 01:22, 8 June 2023

रव गुणांक (NF) और रव कारक (F) विशेषता के आंकड़े हैं जो संकेत-से-रव अनुपात (SNR) में गिरावट का संकेत देते हैं जो संकेत श्रृंखला (संकेत प्रसंस्करण श्रृंखला) में घटकों के कारण होता है। योग्यता के इन आंकड़ों का उपयोग प्रवर्धक या रेडियो अभिग्राही के प्रदर्शन का मूल्यांकन करने के लिए किया जाता है, जिसमें कम मूल्य बेहतर प्रदर्शन का संकेत देते हैं।

रव कारक को मानक रव तापमान T0 पर निविष्ट समाप्ति में ऊष्मीय रव के कारण उपकरण के प्रक्षेपण रव शक्ति के अनुपात के रूप में परिभाषित किया गया है। (सामान्यतः 290 केल्विन)। रव कारक इस प्रकार वास्तविक प्रक्षेपण रव का अनुपात है जो तब बना रहेगा जब उपकरण स्वयं रव का परिचय या निविष्ट एसएनआर का प्रक्षेपण एसएनआर से अनुपात नहीं देता है।

रव कारक और रव आंकड़ा संबंधित हैं, पूर्व में एक इकाई रहित अनुपात और बाद वाला समान अनुपात है लेकिन डेसिबल (डीबी) की इकाइयों में व्यक्त किया गया है। [1]


सामान्य

रव आंकड़ा वास्तविक गृहीता के रव प्रक्षेपण के बीच एक "आदर्श" गृहीता के रव प्रक्षेपण के बीच डेसिबल (डीबी) में अंतर है, जब गृहीता मिलान से जुड़े होते हैं तो उसी समग्र प्रवर्धन (इलेक्ट्रॉनिक्स) और बैंड विस्तार (संकेत प्रोसेसिंग) के साथ मानक रव तापमान टी पर स्रोत0 (सामान्यतः 290 के)। एक साधारण विद्युत भार से रव की शक्ति kTB के बराबर होती है, जहाँ k बोल्ट्जमैन स्थिरांक है, T भार का पूर्ण तापमान है (उदाहरण के लिए एक प्रतिरोधक), और B माप बैंड विस्तार है।

यह रव के आंकड़े को स्थलीय प्रणालियों के लिए योग्यता का एक उपयोगी आंकड़ा बनाता है, जहां स्पृशा प्रभावी तापमान सामान्यतः मानक 290 K के पास होता है। इस स्तिथि में, रव के आंकड़े वाला एक गृहीता, 2 डीबी दूसरे से बेहतर कहता है, एक प्रक्षेपण संकेत होगा रव अनुपात के लिए जो अन्य की तुलना में लगभग 2 डीबी बेहतर है। हालांकि, उपग्रह संचार प्रणालियों की स्तिथि में, जहां गृहीता स्पृशा को ठंडे स्थान की ओर इशारा किया जाता है, स्पृशा प्रभावी तापमान प्रायः 290 K से अधिक ठंडा होता है। [2] इन स्तिथियों में गृहीता के रव के आंकड़े में 2 डीबी सुधार के परिणामस्वरूप प्रक्षेपण संकेत और रव अनुपात में 2 डीबी से अधिक सुधार होगा। इस कारण से, उपग्रह-संचार गृहीता और कम-रव प्रवर्धकों को चित्रित करने के लिए प्रभावी निविष्ट रव तापमान का संबंधित आंकड़ा प्रायः रव के आंकड़े के स्थान पर उपयोग किया जाता है।

समकरण प्रणालियों में, प्रक्षेपण रव शक्ति में छवि-आवृत्ति परिवर्तन से अवांछित योगदान सम्मिलित होता है, लेकिन मानक रव तापमान पर निविष्ट समाप्ति में ऊष्मीय रव के कारण होने वाले हिस्से में केवल वही सम्मिलित होता है जोप्रणाली के प्रमुख आवृत्ति परिवर्तन के माध्यम से प्रक्षेपण में दिखाई देता है और उसे बाहर करता है। जो छवि आवृत्ति परिवर्तन के माध्यम से प्रकट होता है।

परिभाषा

रव कारक F प्रणाली के रूप में परिभाषित किया गया है [3]

जहाँ SNRi और SNRo क्रमशः निविष्ट और प्रक्षेपण संकेत-से-रव अनुपात हैं। वह SNR मात्राएँ इकाई रहित शक्ति अनुपात हैं।

रव का आंकड़ा NF डेसिबल (डीबी) की इकाइयों में रव कारक के रूप में परिभाषित किया गया है:

जहाँ SNRi, dB और SNRo, dB (डीबी) की इकाइयों में हैं।

ये सूत्र केवल तभी मान्य होते हैं जब निविष्ट समाप्ति मानक रव तापमान T0 = 290 K पर होती है, हालांकि व्यवहार में तापमान में छोटे अंतर मूल्यों को महत्वपूर्ण रूप से प्रभावित नहीं करते हैं।

किसी उपकरण का रव कारक उसके रव तापमान Te से संबंधित होता है: [4]T0L

जब उनका भौतिक तापमान T0 के बराबर होता है, तो क्षीणकारी (इलेक्ट्रॉनिक्स) का रव कारक F उनके क्षीणन अनुपात L के बराबर होता है। अधिक सामान्यतः, भौतिक तापमान पर एक क्षीणक T के लिए, रव तापमान Te = (L − 1)T है, निम्नलिखित रव कारक देता है


सोपानित उपकरणों का रव कारक

यदि कई उपकरणों को सोपानित किया जाता है, तो रव के लिए फ़्रिस सूत्रों के साथ कुल रव कारक पाया जा सकता है:[5]

जहाँ Fn n-वें उपकरण के लिए रव कारक है, और Gn n-वें उपकरण का शक्ति लाभ (रैखिक, डीबी में नहीं) है। एक श्रृंखला में पहला प्रवर्धक सामान्यतः कुल रव के आंकड़े पर सबसे महत्वपूर्ण प्रभाव डालता है क्योंकि निम्न चरणों के रव के आंकड़े चरण लाभ से कम हो जाते हैं। नतीजतन, पहले प्रवर्धक में सामान्यतः कम रव का आंकड़ा होता है, और बाद के चरणों की रव आंकड़ा आवश्यकताओं को सामान्यतः अधिक आराम मिलता है।

अतिरिक्त रव के एक समारोह के रूप में रव कारक

स्रोत शक्ति का संकेत देता है और सत्ता का रव . संकेत और रव दोनों ही प्व, र्धित हो जाते हैं। हालाँकि, स्रोत से प्रवर्धित रव के अतिरिक्त, प्रवर्धक इसके प्रक्षेपण में अतिरिक्त रव जोड़ता है इसलिए, प्रवर्धक के प्रक्षेपण में एसएनआर इसके निविष्ट से कम है।

शोर कारक को अतिरिक्त प्रक्षेपण संदर्भित रव शक्ति और प्रवर्धक के शक्ति लब्धि के एक फलन के रूप में व्यक्त किया जा सकता है।

व्युत्पत्ति

रव कारक की परिभाषा से[3]

और एक ऐसी प्रणाली की कल्पना करना जिसमें एक रव एकल चरण प्रवर्धक है। इस प्रवर्धक के संकेत-से-रव अनुपात में इसका अपना प्रक्षेपण संदर्भित रव प्रवर्धित संकेत और प्रवर्धित निविष्ट रव , सम्मिलित होगा

रव कारक परिभाषा के लिए प्रक्षेपण संकेत-से-रव अनुपात को प्रतिस्थापित करना,[6]

सोपानित प्रणाली में पिछले घटक के प्रक्षेपण रव को संदर्भित नहीं करता है। मानक रव तापमान पर एक निविष्ट समाप्ति अभी भी व्यक्तिगत घटक के लिए मानी जाती है। इसका अर्थ यह है कि प्रत्येक घटक द्वारा जोड़ी गई अतिरिक्त रव शक्ति अन्य घटकों से स्वतंत्र है।

दृक् रव आंकड़ा

उपरोक्त विद्युत प्रणालियों में रव का वर्णन करता है। विद्युत स्रोत के बराबर शक्ति वर्णक्रमीय घनत्व के साथ रव kT उत्पन्न करते हैं, जहाँ k बोल्ट्जमैन स्थिरांक है और T पूर्ण तापमान है। हालाँकि, दृक् प्रणाली में भी रव होता है। इनमें स्रोतों का कोई मौलिक रव नहीं होता है। इसके स्थान पर ऊर्जा परिमाणीकरण संसूचक में उल्लेखनीय शॉट रव का कारण बनता है, जो रव शक्ति वर्णक्रमीय घनत्व hf के अनुरूप होता है, जहाँ h प्लैंक स्थिरांक है और f दृक् आवृत्ति है।

1990 के दशक में, एक दृक् रव आंकड़ा परिभाषित किया गया है। [7] यह Fpnf फोटॉन संख्या में उतार-चढ़ाव के लिए कहा गया है। [8] SNR और रव कारक गणना के लिए आवश्यक शक्तियाँ एक प्रकाश चालकीय डायोड में करंट के कारण होने वाली विद्युत शक्तियाँ हैं। SNR, माध्य प्रकाशिक धारा का वर्ग है जिसे प्रकाशधारा के विचरण से विभाजित किया जाता है। एकवर्णी या पर्याप्त रूप से क्षीण प्रकाश में पता लगाए गए फोटॉन का पॉइसन वितरण होता है। यदि, एक पता लगाने के अंतराल के दौरान पता लगाए गए फोटॉन का अपेक्षित मूल्य n है तो विचरण भी n है और एक SNRpnf,in = n2/n = n प्राप्त करता है। शक्ति लब्धि के साथ एक दृक् प्रवर्धक के पीछे G का एक माध्य Gn फोटॉन होगा। बड़े Gn(2nsp(G-1)+1) की सीमा में n फोटॉनों का विचरण है जहाँ nsp सहज उत्सर्जन कारक है। एक SNRpnf,out = G2n2/(Gn(2nsp(G-1)+1)) = n/(2nsp(1-1/G)+1/G) प्राप्त करता है। परिणामी दृक् रव कारक Fpnf = SNRpnf,in / SNRpnf,out = 2nsp(1-1/G)+1/G है

Fpnf विद्युत रव कारक की तुलना में वैचारिक संघर्ष में है, जिसे अब Fe कहा जाता है:

प्रकाश विद्युत् धारा दृक् पावर के समानुपाती होता है। दृक् शक्ति एक क्षेत्र आयाम (विद्युत या चुंबकीय) के वर्गों के समानुपाती होती है। तो, गृहीता आयाम में अरैखिक है। SNRpnf गणना के लिए आवश्यक शक्ति संकेत आयाम की चौथी शक्ति के समानुपाती होती है। लेकिन Fe के लिए विद्युत कार्यछेत्र में शक्ति संकेत आयाम के वर्ग के समानुपाती होती है।

एक निश्चित विद्युत आवृत्ति पर, संकेत के साथ चरण (I) और चतुर्भुज (Q) में रव होता है। ये दोनों चतुर्भुज विद्युत प्रवर्धक के पीछे उपलब्ध होते हैं। एक दृक् प्रवर्धक में भी यही होता है। लेकिन माप के लिए प्रत्यक्ष पहचान फोटोगृहीता SNRpnf की आवश्यकता होती है। मुख्य रूप से समकला रव को ध्यान में रखता है जबकि उच्च के लिए क्वाडरेचर रव n को उपेक्षित किया जा सकता है। साथ ही, गृहीता केवल एक चतुर्भुज का उत्पादन करता है। तो, एक चतुर्भुज खो गया है।

बड़े के साथ एक दृक् प्रवर्धक के लिए G उसके पास Fpnf ≥ 2 होता है जबकि एक विद्युत प्रवर्धक के लिए यह Fe ≥ 1 धारण करता है

इसके अतिरिक्त, आज के लंबी दूरी के दृक् फाइबर संचार में सुसंगत दृक् I&Q गृहीता का प्रभुत्व है लेकिन Fpnf इनमें देखी गई SNR गिरावट का वर्णन नहीं करता है।

उपरोक्त संघर्षों को दृक् समकला और क्वाडरेचर रव गुणांक द्वारा हल किया जाता है Fo,IQ.[9] इसे सुसंगत दृक् I&Q गृहीता का उपयोग करके मापा जा सकता है। इनमें, प्रक्षेपण संकेत की शक्ति एक दृक् क्षेत्र आयाम के वर्ग के समानुपाती होती है क्योंकि वे आयाम में रैखिक होते हैं। वे दोनों चतुर्भुज पास करते हैं। एक दृक् प्रवर्धक के लिए यह Fo,IQ = nsp(1-1/G)+1/G ≥ 1धारण करता है. मात्रा nsp(1-1/G) प्रति मोड जोड़े गए रव फोटॉनों की निविष्ट-संदर्भित संख्या है।

Fo,IQ और Fpnf को आसानी से एक दूसरे में परिवर्तित किया जा सकता है। बड़े के लिए G उसके पास  Fo,IQ = Fpnf/2  होता है या, जब dB में व्यक्त किया जाता है, Fo,IQ 3 dB Fpnf से कम है।

यूनिफाइड रव गुणांक

प्रति मोड कुल रव शक्ति वर्णक्रमीय घनत्व kT + hf है . विद्युत क्षेत्र में hf उपेक्षित किया जा सकता है। दृक् कार्यछेत्र में kT उपेक्षित किया जा सकता है। बीच में, कहते हैं, निम्न THz या ऊष्मीय कार्यछेत्र में, दोनों पर विचार करने की आवश्यकता होगी। इलेक्ट्रिकल और दृक् कार्यछेत्र के बीच मिश्रण करना संभव है जैसे कि एक सार्वभौमिक रव आंकड़ा प्राप्त होता है।

यह प्रयास एक रव फिगर Ffas द्वारा किया गया है [10] जहां सबस्क्रिप्ट आयाम वर्गों के उतार-चढ़ाव के लिए है। दृक् आवृत्तियों पर Ffas बराबर है। लेकिन वैचारिक अंतर Fe पर काबू नहीं पाया जा सकता: यह असंभव लगता है कि बढ़ती आवृत्ति के लिए (इलेक्ट्रिकल से ऊष्मीय से दृक् तक) 2 चतुर्भुज (विद्युत कार्यछेत्र में) धीरे-धीरे 1 चतुर्भुज बन जाते हैं (दृक् गृहीता में जो निर्धारित करते हैं Ffas या Fpnf). आदर्श रव कारक को 1 (विद्युत) से 2 (दृक्) तक जाने की आवश्यकता होगी, जो सहज नहीं है। एकीकरण के लिए Fpnf साथ Fe, संकेतआयाम के वर्ग (विद्युत कार्यछेत्र में शक्तियाँ) भी धीरे-धीरेआयाम (दृक् प्रत्यक्ष संसूचन गृहीता में शक्तियाँ) की चौथी शक्तियाँ बन जानी चाहिए, जो असंभव लगता है।

Fe और Fo,IQ के लिए दृक् और विद्युत रव के आंकड़ों का एक सुसंगत एकीकरण प्राप्त किया जाता है। कोई विरोधाभास नहीं है क्योंकि ये दोनों वैचारिक मेल में हैं (कोणांक, रैखिक, 2 चतुष्कोणों के वर्गों के आनुपातिक शक्तियां, 1 के बराबर आदर्श रव कारक)। ऊष्मीय रव kT और मौलिक क्वांटम रव hf विचाराधीन है। एकीकृत रव आंकड़ा FIQ = (kTFe + hfFo,IQ) / (kT + hf) = (kT(T + Te)) + hf(nsp(1-1/G)+1/G)) / (kT + hf) में हैं। [9]


यह भी देखें

संदर्भ

  1. "Noise temperature, Noise Figure and Noise Factor".
  2. Agilent 2010, p. 7
  3. 3.0 3.1 Agilent 2010, p. 5.
  4. Agilent 2010, p. 7 with some rearrangement from Te = T0(F − 1).
  5. Agilent 2010, p. 8.
  6. Aspen Core. Derivation of noise figure equations (DOCX), pp. 3–4
  7. E. Desurvire, „Erbium doped fiber amplifiers: Principles and Applications“, Wiley, New York, 1994
  8. H. A. Haus, "The noise figure of optical amplifiers," in IEEE Photonics Technology Letters, vol. 10, no. 11, pp. 1602-1604, Nov. 1998, doi: 10.1109/68.726763
  9. 9.0 9.1 R. Noe, "Consistent Optical and Electrical Noise Figure," in Journal of Lightwave Technology, 2022, doi: 10.1109/JLT.2022.3212936, https://ieeexplore.ieee.org/document/9915356
  10. H. A. Haus, "Noise Figure Definition Valid From RF to Optical Frequencies," in IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 6, NO. 2, MARCH/APRIL 2000, pp. 240-247


बाहरी संबंध

Public Domain This article incorporates public domain material from Federal Standard 1037C. General Services Administration. (in support of MIL-STD-188).