कवर (बीजगणित): Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 40: | Line 40: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 26/05/2023]] | [[Category:Created On 26/05/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 13:52, 9 June 2023
सार बीजगणित में एक आवरण कुछ गणितीय संरचना मानचित्रण का एक अन्य उदाहरण पर एक उदाहरण है जैसे कि एक समूह (गणित) (तुच्छ रूप से) एक उपसमूह को आवरण करता है। इसे आवरण (टोपोलॉजी) की अवधारणा से अस्पष्ट नहीं होना चाहिए।
जब किसी वस्तु X को किसी अन्य वस्तु Y को आवरण के लिए कहा जाता है तो आवरण कुछ विशेषण और समरूपता द्वारा दिया जाता है। संरचना-संरक्षण मानचित्र f : X → Y. संरचना-संरक्षण का स्पष्ट अर्थ गणितीय संरचना के प्रकार पर निर्भर करता है जिसमें X और Y उदाहरण हैं। रोचक होने के लिए आवरण सामान्यतः अतिरिक्त गुणों से संपन्न होता है, जो संदर्भ पर अत्यधिक निर्भर होते हैं।
उदाहरण
डी. बी. मैकएलिस्टर के कारण अर्धसमूह सिद्धांत में एक उत्कृष्ट परिणाम बताता है कि प्रत्येक व्युत्क्रम अर्धसमूह में एक व्युत्क्रम_अर्धसमूह या ई-एकात्मक_इनवर्स_अर्धसमूह ई-एकात्मक आवरण होता है; विशेषण होने के अतिरिक्त इस स्थिति में होमोमोर्फिज्म भी इम्पॉटेंट सेपरेटिविंग है, जिसका अर्थ है कि इसके कर्नेल (बीजगणित) में एक इडेमपोटेंट और नॉन-इम्पोटेंट कभी भी समान समकक्ष वर्ग से संबंधित नहीं होते हैं। विपरीत अर्धसमूहों के लिए वास्तव में कुछ शक्तिशाली दिखाया गया है: प्रत्येक विपरीत अर्धसमूह एक व्युत्क्रम अर्धसमूह या F -व्युत्क्रम अर्धसमूह F -व्युत्क्रम आवरण स्वीकार करता है।[1] मैकएलिस्टर का आवरण प्रमेय अर्धसमूहों के विशेष वर्गों के लिए सामान्यीकरण करता है: प्रत्येक रूढ़िवादी अर्धसमूह में एक एकात्मक आवरण होता है।[2]
बीजगणित के अन्य क्षेत्रों के उदाहरणों में एक अनंत समूह [3] का फ्रैटिनी कवर और लाइ समूह का सार्वभौमिक आवरण सम्मिलित है।
मॉड्यूल
यदि F कुछ वलय आर पर मॉड्यूल का कुछ वर्ग है, तो मॉड्यूल एम का एक F -कवर निम्नलिखित गुणों के साथ एक समरूपता X → M है:
- X वर्ग F में है
- X→M आच्छादक है
- F से M वर्ग में किसी मॉड्यूल से कोई विशेषण नक्शा X के माध्यम से कारक है
- मानचित्र के साथ M तक आने वाली X की कोई भी एंडोमोर्फिज्म एक ऑटोमोर्फिज्म है।
सामान्यतः M के F -आवरण का अस्तित्व नहीं होना चाहिए किंतु यदि यह अस्तित्व में है तो यह (गैर-अद्वितीय) आइसोमोर्फिज्म तक अद्वितीय है।
उदाहरणों में सम्मिलित :
- प्रोजेक्टिव आवरण (सदैव सही वलय पर उपस्थित होते हैं)
- सपाट आवरण (सदैव उपस्थित )
- मरोड़-मुक्त आवरण (सदैव अभिन्न डोमेन पर उपस्थित होते हैं)
- इंजेक्शन आवरण
यह भी देखें
टिप्पणियाँ
- ↑ Lawson p. 230
- ↑ Grilett p. 360
- ↑ Fried, Michael D.; Jarden, Moshe (2008). फील्ड अंकगणित. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Vol. 11 (3rd revised ed.). Springer-Verlag. p. 508. ISBN 978-3-540-77269-9. Zbl 1145.12001.
संदर्भ
- Howie, John M. (1995). Fundamentals of Semigroup Theory. Clarendon Press. ISBN 0-19-851194-9.