शून्य क्षेत्र विभाजन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
शून्य क्षेत्र विभाजन (जेडएफएस) एक से अधिक अयुग्मित इलेक्ट्रॉन की उपस्थिति के परिणामस्वरूप अणु या आयन के ऊर्जा स्तरों के विभिन्न अंतःक्रियाओं का वर्णन करता है। क्वांटम यांत्रिकी में एक ऊर्जा स्तर को अध: पतन कहा जाता है यदि यह क्वांटम प्रणाली के दो या दो से अधिक अलग-अलग औसत स्थान की अवस्थाओं के अनुरूप हो। एक चुंबकीय क्षेत्र की उपस्थिति में, ज़िमानप्रभाव पतित अवस्थाओं को विभाजित करने के लिए जाना जाता है। क्वांटम यांत्रिकी शब्दावली में कहा जाता है कि चुंबकीय क्षेत्र की उपस्थिति से अध: पतन को हटा दिया जाता है। एक से अधिक अयुग्मित इलेक्ट्रॉनों की उपस्थिति में इलेक्ट्रॉन परस्पर क्रिया करके दो या दो से अधिक ऊर्जा अवस्थाओं को जन्म देते हैं। शून्य क्षेत्र विभाजन एक चुंबकीय क्षेत्र की अनुपस्थिति में भी अध: पतन के इस उत्थान को संदर्भित करता है। जेडएफएस सामग्री के चुंबकीय गुणों से संबंधित कई प्रभावों के लिए उत्तरदाई है, जैसा कि उनके [[इलेक्ट्रॉन स्पिन अनुनाद स्पेक्ट्रोस्कोपी]] और चुंबकत्व में प्रकट होता है।<ref>{{cite book|last1=Atherton|first1=N.M.|title=इलेक्ट्रॉन स्पिन अनुनाद के सिद्धांत|journal=Biochemical Education|volume=23|pages=48|year=1993|publisher=Ellis Horwood PTR Prentice Hall|isbn=978-0-137-21762-5 |doi= 10.1016/0307-4412(95)90208-2}}</ref>
शून्य क्षेत्र विभाजन (ZFS) से अधिक अयुग्मित इलेक्ट्रॉन की उपस्थिति के परिणामस्वरूप अणु या आयन के ऊर्जा स्तरों के विभिन्न अंतःक्रियाओं का वर्णन करता है। क्वांटम यांत्रिकी में ऊर्जा स्तर को अध: पतन कहा जाता है यदि यह क्वांटम प्रणाली के दो या दो से अधिक अलग-अलग औसत स्थान की अवस्थाओं के अनुरूप हो। चुंबकीय क्षेत्र की उपस्थिति में, ज़िमानप्रभाव पतित अवस्थाओं को विभाजित करने के लिए जाना जाता है। क्वांटम यांत्रिकी शब्दावली में कहा जाता है कि चुंबकीय क्षेत्र की उपस्थिति से अध: पतन को हटा दिया जाता है। से अधिक अयुग्मित इलेक्ट्रॉनों की उपस्थिति में इलेक्ट्रॉन परस्पर क्रिया करके दो या दो से अधिक ऊर्जा अवस्थाओं को जन्म देते हैं। शून्य क्षेत्र विभाजन चुंबकीय क्षेत्र की अनुपस्थिति में भी अध: पतन के इस उत्थान को संदर्भित करता है। ZFS सामग्री के चुंबकीय गुणों से संबंधित कई प्रभावों के लिए उत्तरदाई है, जैसा कि उनके [[इलेक्ट्रॉन स्पिन अनुनाद स्पेक्ट्रोस्कोपी]] और चुंबकत्व में प्रकट होता है।<ref>{{cite book|last1=Atherton|first1=N.M.|title=इलेक्ट्रॉन स्पिन अनुनाद के सिद्धांत|journal=Biochemical Education|volume=23|pages=48|year=1993|publisher=Ellis Horwood PTR Prentice Hall|isbn=978-0-137-21762-5 |doi= 10.1016/0307-4412(95)90208-2}}</ref>


जेडएफएस के लिए क्लासिक केस स्पिन ट्रिपलेट है, अर्थात S=1 स्पिन प्रणाली एक चुंबकीय क्षेत्र की उपस्थिति में चुंबकीय [[स्पिन क्वांटम संख्या]] के विभिन्न मानो वाले स्तर (M<sub>S</sub>=0,±1) अलग हो जाते हैं और [[Zeeman विभाजन|ज़िमान विभाजन]] उनके अलगाव को निर्देशित करता है। चुंबकीय क्षेत्र की अनुपस्थिति में त्रिक के 3 स्तर पहले क्रम के समऊर्जावान होते हैं। चूँकि जब अंतर-इलेक्ट्रॉन प्रतिकर्षण के प्रभावों पर विचार किया जाता है तो ट्रिपलेट के तीन उपस्तरों की ऊर्जा को अलग होते देखा जा सकता है। यह प्रभाव इस प्रकार जेडएफएस का एक उदाहरण है। अलगाव की डिग्री प्रणाली की समरूपता पर निर्भर करती है।
ZFS के लिए क्लासिक केस स्पिन ट्रिपलेट है, अर्थात S=1 स्पिन प्रणाली चुंबकीय क्षेत्र की उपस्थिति में चुंबकीय [[स्पिन क्वांटम संख्या]] के विभिन्न मानो वाले स्तर (M<sub>S</sub>=0,±1) अलग हो जाते हैं और [[Zeeman विभाजन|ज़िमान विभाजन]] उनके अलगाव को निर्देशित करता है। चुंबकीय क्षेत्र की अनुपस्थिति में त्रिक के 3 स्तर पहले क्रम के समऊर्जावान होते हैं। चूँकि जब अंतर-इलेक्ट्रॉन प्रतिकर्षण के प्रभावों पर विचार किया जाता है तो ट्रिपलेट के तीन उपस्तरों की ऊर्जा को अलग होते देखा जा सकता है। यह प्रभाव इस प्रकार ZFS का उदाहरण है। अलगाव की डिग्री प्रणाली की समरूपता पर निर्भर करती है।


== क्वांटम यांत्रिक विवरण ==
== क्वांटम यांत्रिक विवरण                                                                                                   ==
इसी [[हैमिल्टनियन (क्वांटम यांत्रिकी)]] को इस प्रकार लिखा जा सकता है:
इसी [[हैमिल्टनियन (क्वांटम यांत्रिकी)]] को इस प्रकार लिखा जा सकता है:


Line 9: Line 9:
जहाँ S कुल स्पिन क्वांटम संख्या है, और <math>S_{x,y,z}</math> स्पिन मैट्रिसेस हैं।
जहाँ S कुल स्पिन क्वांटम संख्या है, और <math>S_{x,y,z}</math> स्पिन मैट्रिसेस हैं।


जेडएफएस पैरामीटर का मान सामान्यतः D और E पैरामीटर के माध्यम से परिभाषित किया जाता है। D चुंबकीय द्विध्रुवीय-द्विध्रुवीय अंतःक्रिया के अक्षीय घटक का वर्णन करता है, और E अनुप्रस्थ घटक [[ इलेक्ट्रॉन पैरामैग्नेटिक अनुनाद |इलेक्ट्रॉन पैरामैग्नेटिक अनुनाद]] मापन द्वारा कार्बनिक बायोरैडिकल की एक विस्तृत संख्या के लिए D मान प्राप्त किया गया है। यह मान अन्य मैग्नेटोमेट्री विधियों जैसे [[SQUID|स्क्विड]] द्वारा मापा जा सकता है; चूँकि अधिकत्तर स्थितियों में ईपीआर माप अधिक स्पष्ट डेटा प्रदान करते हैं। यह मान अन्य विधियों के साथ भी प्राप्त किया जा सकता है जैसे वैकल्पिक रूप से पता लगाए गए चुंबकीय अनुनाद (ओडीएमआर; एक दोहरी अनुनाद विधि जो प्रतिदीप्ति, फॉस्फोरेसेंस और अवशोषण जैसे मापों के साथ ईपीआर को जोड़ती है) एक एकल अणु या हीरे जैसे ठोस में दोष के प्रति संवेदनशीलता के साथ ( उदाहरण [[एन-वी केंद्र]]) या [[ सिलिकन कार्बाइड |सिलिकन कार्बाइड]] ।
ZFS पैरामीटर का मान सामान्यतः D और E पैरामीटर के माध्यम से परिभाषित किया जाता है। D चुंबकीय द्विध्रुवीय-द्विध्रुवीय अंतःक्रिया के अक्षीय घटक का वर्णन करता है और E अनुप्रस्थ घटक [[ इलेक्ट्रॉन पैरामैग्नेटिक अनुनाद |इलेक्ट्रॉन पैरामैग्नेटिक अनुनाद]] मापन द्वारा कार्बनिक बायोरैडिकल की विस्तृत संख्या के लिए D मान प्राप्त किया गया है। यह मान अन्य मैग्नेटोमेट्री विधियों जैसे [[SQUID|स्क्विड]] द्वारा मापा जा सकता है; चूँकि अधिकत्तर स्थितियों में ईपीआर माप अधिक स्पष्ट डेटा प्रदान करते हैं। यह मान अन्य विधियों के साथ भी प्राप्त किया जा सकता है जैसे वैकल्पिक रूप से पता लगाए गए चुंबकीय अनुनाद (ओडीएमआर; दोहरी अनुनाद विधि जो प्रतिदीप्ति, फॉस्फोरेसेंस और अवशोषण जैसे मापों के साथ ईपीआर को जोड़ती है) एकल अणु या हीरे जैसे ठोस में दोष के प्रति संवेदनशीलता के साथ ( उदाहरण [[एन-वी केंद्र|n-वी केंद्र]]) या [[ सिलिकन कार्बाइड |सिलिकन कार्बाइड]] ।


=== बीजगणितीय व्युत्पत्ति ===
=== बीजगणितीय व्युत्पत्ति ===
शुरुआत संबंधित हैमिल्टन <math>\hat{\mathcal{H}}_D=\mathbf{SDS}</math> है <math>\mathbf{D}</math> दो अयुग्मित चक्रणों <math>S_1</math> और <math>S_2</math> के बीच द्विध्रुवीय स्पिन-स्पिन अंतःक्रिया का वर्णन करता है। जहां <math>S</math> टोटल स्पिन है <math>S=S_1+S_2</math>और <math>\mathbf{D}</math> एक सिमेट्रिक और ट्रेसलेस होने के नाते (जो कि तब होता है जब <math>\mathbf{D}</math> डीपोल-डीपोल इंटरेक्शन से उत्पन्न होता है) आव्यूह जिसका अर्थ है कि यह विकर्ण है।
प्रारंभिक संबंधित हैमिल्टन <math>\hat{\mathcal{H}}_D=\mathbf{SDS}</math> है <math>\mathbf{D}</math> दो अयुग्मित चक्रणों <math>S_1</math> और <math>S_2</math> के बीच द्विध्रुवीय स्पिन-स्पिन अंतःक्रिया का वर्णन करता है। जहां <math>S</math> कुल स्पिन है <math>S=S_1+S_2</math>और <math>\mathbf{D}</math> सिमेट्रिक और ट्रेसलेस होने के नाते (जो कि तब होता है जब <math>\mathbf{D}</math> डीपोल-डीपोल इंटरेक्शन से उत्पन्न होता है) आव्यूह जिसका अर्थ है कि यह विकर्ण है।


{{NumBlk|:|<math id="DipolarSpinSpin">
{{NumBlk|:|<math id="DipolarSpinSpin">
Line 25: Line 25:


<math>\mathbf{D}</math> ट्रेसलेस होने के साथ (<math>D_{xx}+D_{yy}+D_{zz}=0</math>। सरलता के लिए <math>D_{j}</math> को <math>D_{jj}</math> के रूप में परिभाषित किया गया है। हैमिल्टन बन जाता है:{{NumBlk|:|<math id="eq2"> \hat{\mathcal{H}}_D=D_x S_x^2+D_y S_y^2+D_z S_z^2</math>|{{EquationRef|2}}}}
<math>\mathbf{D}</math> ट्रेसलेस होने के साथ (<math>D_{xx}+D_{yy}+D_{zz}=0</math>। सरलता के लिए <math>D_{j}</math> को <math>D_{jj}</math> के रूप में परिभाषित किया गया है। हैमिल्टन बन जाता है:{{NumBlk|:|<math id="eq2"> \hat{\mathcal{H}}_D=D_x S_x^2+D_y S_y^2+D_z S_z^2</math>|{{EquationRef|2}}}}


कुंजी <math>D_x S_x^2+D_y S_y^2</math> को इसके माध्य मान और विचलन <math>\Delta</math> के रूप में व्यक्त करना है।
कुंजी <math>D_x S_x^2+D_y S_y^2</math> को इसके माध्य मान और विचलन <math>\Delta</math> के रूप में व्यक्त करना है।

Revision as of 15:05, 2 June 2023

शून्य क्षेत्र विभाजन (ZFS) से अधिक अयुग्मित इलेक्ट्रॉन की उपस्थिति के परिणामस्वरूप अणु या आयन के ऊर्जा स्तरों के विभिन्न अंतःक्रियाओं का वर्णन करता है। क्वांटम यांत्रिकी में ऊर्जा स्तर को अध: पतन कहा जाता है यदि यह क्वांटम प्रणाली के दो या दो से अधिक अलग-अलग औसत स्थान की अवस्थाओं के अनुरूप हो। चुंबकीय क्षेत्र की उपस्थिति में, ज़िमानप्रभाव पतित अवस्थाओं को विभाजित करने के लिए जाना जाता है। क्वांटम यांत्रिकी शब्दावली में कहा जाता है कि चुंबकीय क्षेत्र की उपस्थिति से अध: पतन को हटा दिया जाता है। से अधिक अयुग्मित इलेक्ट्रॉनों की उपस्थिति में इलेक्ट्रॉन परस्पर क्रिया करके दो या दो से अधिक ऊर्जा अवस्थाओं को जन्म देते हैं। शून्य क्षेत्र विभाजन चुंबकीय क्षेत्र की अनुपस्थिति में भी अध: पतन के इस उत्थान को संदर्भित करता है। ZFS सामग्री के चुंबकीय गुणों से संबंधित कई प्रभावों के लिए उत्तरदाई है, जैसा कि उनके इलेक्ट्रॉन स्पिन अनुनाद स्पेक्ट्रोस्कोपी और चुंबकत्व में प्रकट होता है।[1]

ZFS के लिए क्लासिक केस स्पिन ट्रिपलेट है, अर्थात S=1 स्पिन प्रणाली चुंबकीय क्षेत्र की उपस्थिति में चुंबकीय स्पिन क्वांटम संख्या के विभिन्न मानो वाले स्तर (MS=0,±1) अलग हो जाते हैं और ज़िमान विभाजन उनके अलगाव को निर्देशित करता है। चुंबकीय क्षेत्र की अनुपस्थिति में त्रिक के 3 स्तर पहले क्रम के समऊर्जावान होते हैं। चूँकि जब अंतर-इलेक्ट्रॉन प्रतिकर्षण के प्रभावों पर विचार किया जाता है तो ट्रिपलेट के तीन उपस्तरों की ऊर्जा को अलग होते देखा जा सकता है। यह प्रभाव इस प्रकार ZFS का उदाहरण है। अलगाव की डिग्री प्रणाली की समरूपता पर निर्भर करती है।

क्वांटम यांत्रिक विवरण

इसी हैमिल्टनियन (क्वांटम यांत्रिकी) को इस प्रकार लिखा जा सकता है:

जहाँ S कुल स्पिन क्वांटम संख्या है, और स्पिन मैट्रिसेस हैं।

ZFS पैरामीटर का मान सामान्यतः D और E पैरामीटर के माध्यम से परिभाषित किया जाता है। D चुंबकीय द्विध्रुवीय-द्विध्रुवीय अंतःक्रिया के अक्षीय घटक का वर्णन करता है और E अनुप्रस्थ घटक इलेक्ट्रॉन पैरामैग्नेटिक अनुनाद मापन द्वारा कार्बनिक बायोरैडिकल की विस्तृत संख्या के लिए D मान प्राप्त किया गया है। यह मान अन्य मैग्नेटोमेट्री विधियों जैसे स्क्विड द्वारा मापा जा सकता है; चूँकि अधिकत्तर स्थितियों में ईपीआर माप अधिक स्पष्ट डेटा प्रदान करते हैं। यह मान अन्य विधियों के साथ भी प्राप्त किया जा सकता है जैसे वैकल्पिक रूप से पता लगाए गए चुंबकीय अनुनाद (ओडीएमआर; दोहरी अनुनाद विधि जो प्रतिदीप्ति, फॉस्फोरेसेंस और अवशोषण जैसे मापों के साथ ईपीआर को जोड़ती है) एकल अणु या हीरे जैसे ठोस में दोष के प्रति संवेदनशीलता के साथ ( उदाहरण n-वी केंद्र) या सिलिकन कार्बाइड

बीजगणितीय व्युत्पत्ति

प्रारंभिक संबंधित हैमिल्टन है दो अयुग्मित चक्रणों और के बीच द्विध्रुवीय स्पिन-स्पिन अंतःक्रिया का वर्णन करता है। जहां कुल स्पिन है और सिमेट्रिक और ट्रेसलेस होने के नाते (जो कि तब होता है जब डीपोल-डीपोल इंटरेक्शन से उत्पन्न होता है) आव्यूह जिसका अर्थ है कि यह विकर्ण है।

 

 

 

 

(1)


ट्रेसलेस होने के साथ (। सरलता के लिए को के रूप में परिभाषित किया गया है। हैमिल्टन बन जाता है:

 

 

 

 

(2)

कुंजी को इसके माध्य मान और विचलन के रूप में व्यक्त करना है।

 

 

 

 

(3)


विचलन का मान ज्ञात करने के लिए जो तब समीकरण (3) को पुनर्व्यवस्थित करके है:

 

 

 

 

(4)


(4) और (3) को (2) में डालने पर परिणाम इस प्रकार पढ़ता है:

 

 

 

 

(5)


ध्यान दें कि दूसरी पंक्ति में (5) जोड़ा गया था। ऐसा करके का और उपयोग किया जा सकता है। इस तथ्य का उपयोग करके, ट्रेसलेस है समीकरण (5) को सरल करता है:

 

 

 

 

(6)

D और E पैरामीटर समीकरण को परिभाषित करके (6) हो जाता है:

 

 

 

 

(7)

साथ और (मापने योग्य) शून्य क्षेत्र विभाजन मान है ।

संदर्भ

  1. Atherton, N.M. (1993). इलेक्ट्रॉन स्पिन अनुनाद के सिद्धांत. p. 48. doi:10.1016/0307-4412(95)90208-2. ISBN 978-0-137-21762-5. {{cite book}}: |journal= ignored (help)


अग्रिम पठन


बाहरी संबंध