प्रतिसमरूपता: Difference between revisions

From Vigyanwiki
No edit summary
Line 6: Line 6:


== परिभाषा ==
== परिभाषा ==
अनौपचारिक रूप से, एक प्रतिसमरूपता एक नक्शा है जो गुणन के क्रम को बदलता है। औपचारिक रूप से, संरचनाओं के बीच एक प्रतिसमरूपता <math>X</math> और <math>Y</math> एक समरूपता है <math>\phi\colon X \to Y^{\text{op}}</math>, कहाँ <math>Y^{\text{op}}</math> के बराबर होती है <math>Y</math> एक समुच्चय के रूप में, लेकिन इसका गुणन उस परिभाषित पर उलटा है <math>Y</math>. पर (आम तौर पर गैर-[[ विनिमेय ]]) गुणन को नकारना <math>Y</math> द्वारा <math>\cdot</math>, गुणन पर <math>Y^{\text{op}}</math>, द्वारा चिह्नित <math>*</math>, द्वारा परिभाषित किया गया है <math>x*y := y \cdot x</math>. जो वस्तु <math>Y^{\text{op}}</math> के विपरीत वस्तु कहलाती है <math>Y</math> (क्रमशः, [[विपरीत समूह]], [[विपरीत बीजगणित]], [[विपरीत श्रेणी]] आदि)
अनौपचारिक रूप से, एक प्रतिसमरूपता एक मानचित्र है जो गुणन के क्रम को बदलता है। औपचारिक रूप से, संरचनाओं <math>X</math> और <math>Y</math> के बीच एक प्रतिसमरूपता एक समरूपता <math>\phi\colon X \to Y^{\text{op}}</math> है, जहां <math>Y^{\text{op}}</math> एक समुच्चय के रूप में <math>Y</math> के बराबर है, लेकिन इसका गुणन <math>Y</math> पर परिभाषित के व्युत्क्रम है। <math>Y</math> पर <math>\cdot</math> द्वारा (आम तौर पर अविनिमेय) गुणन को निर्दिष्ट करना, <math>Y^{\text{op}}</math> पर गुणन, द्वारा चिह्नित <math>*</math>, <math>x*y := y \cdot x</math> द्वारा परिभाषित किया गया है। वस्तु <math>Y^{\text{op}}</math> को <math>Y</math> (क्रमशः, [[विपरीत समूह]], [[विपरीत बीजगणित]], [[विपरीत श्रेणी]] आदि) के '''विपरीत वस्तु''' कहा जाता है।


यह परिभाषा समाकारिता के समतुल्य है <math>\phi\colon X^{\text{op}} \to Y</math> (नक्शा लागू करने से पहले या बाद में ऑपरेशन को उलट देना समतुल्य है)। औपचारिक रूप से, भेज रहा हूँ <math>X</math> को <math>X^{\text{op}}</math> और मानचित्रों पर पहचान के रूप में कार्य करना एक फ़नकार है (वास्तव में, एक इनवोल्यूशन (गणित))।
यह परिभाषा समाकारिता के तुल्य है <math>\phi\colon X^{\text{op}} \to Y</math> (मानचित्र लागू करने से पहले या बाद में प्रचालन को व्युत्क्रम कर देना तुल्य है)। औपचारिक रूप से, <math>X</math> को <math>X^{\text{op}}</math> भेजना (सेन्डिंग) और मानचित्रों पर सर्वसमिका के रूप में कार्य करना एक [[फलननिर्धारक]] (वास्तव में, एक [[अंतर्वलन]]) है।


== उदाहरण ==
== उदाहरण ==

Revision as of 21:36, 3 June 2023

गणित में, एक प्रतिसमरूपता (एंटीहोमोमोर्फिज्म) एक प्रकार का फलन है जो गुणन के साथ समुच्चयों पर परिभाषित होता है जो गुणन के क्रम को उलट देता है। एक एंटीऑटोमोर्फिज्म एक एकैकी आच्छादी प्रतिसमरूपता है, यानी एक एंटीसोमोर्फिज्म, एक समुच्चय से लेकर स्वयं तक है। एकैक आच्छादन से यह पता चलता है कि एंटीऑटोमोर्फिज्म में व्युत्क्रम होते हैं, और यह कि एंटीऑटोमोर्फिज्म का व्युत्क्रम भी एक एंटीऑटोमोर्फिज्म होता है।

परिभाषा

अनौपचारिक रूप से, एक प्रतिसमरूपता एक मानचित्र है जो गुणन के क्रम को बदलता है। औपचारिक रूप से, संरचनाओं और के बीच एक प्रतिसमरूपता एक समरूपता है, जहां एक समुच्चय के रूप में के बराबर है, लेकिन इसका गुणन पर परिभाषित के व्युत्क्रम है। पर द्वारा (आम तौर पर अविनिमेय) गुणन को निर्दिष्ट करना, पर गुणन, द्वारा चिह्नित , द्वारा परिभाषित किया गया है। वस्तु को (क्रमशः, विपरीत समूह, विपरीत बीजगणित, विपरीत श्रेणी आदि) के विपरीत वस्तु कहा जाता है।

यह परिभाषा समाकारिता के तुल्य है (मानचित्र लागू करने से पहले या बाद में प्रचालन को व्युत्क्रम कर देना तुल्य है)। औपचारिक रूप से, को भेजना (सेन्डिंग) और मानचित्रों पर सर्वसमिका के रूप में कार्य करना एक फलननिर्धारक (वास्तव में, एक अंतर्वलन) है।

उदाहरण

समूह सिद्धांत में, एक प्रतिसमरूपता दो समूहों के बीच एक नक्शा है जो गुणन के क्रम को उलट देता है। तो यदि φ : XY एक समूह प्रतिसमरूपता है,

φ(xy) = φ(y)φ(x)

एक्स में सभी एक्स, वाई के लिए।

वह मानचित्र जो x को x भेजता है−1 एक समूह एंटीऑटोमोर्फिज्म का एक उदाहरण है। एक अन्य महत्वपूर्ण उदाहरण रैखिक बीजगणित में खिसकाना ऑपरेशन है, जो पंक्ति वैक्टर को कॉलम वेक्टर में ले जाता है। किसी सदिश-मैट्रिक्स समीकरण को समतुल्य समीकरण में स्थानांतरित किया जा सकता है जहां कारकों का क्रम उलटा हो।

मेट्रिसेस के साथ, ट्रांसपोज़ मैप द्वारा एंटीऑटोमोर्फिज़्म का एक उदाहरण दिया गया है। चूंकि व्युत्क्रम और ट्रांसपोज़िंग दोनों ही एंटीऑटोमोर्फिज़्म देते हैं, इसलिए उनकी रचना एक ऑटोमोर्फिज़्म है। इस समावेशन को अक्सर विरोधाभासी नक्शा कहा जाता है, और यह सामान्य रैखिक समूह के बाहरी ऑटोमोर्फिज्म का उदाहरण प्रदान करता है GL(n, F), जहां F एक फ़ील्ड है, सिवाय इसके कि कब |F| = 2 और n = 1 or 2, या |F| = 3 और n = 1 (यानी, समूहों के लिए GL(1, 2), GL(2, 2), और GL(1, 3)).

अंगूठी सिद्धांत में, एक प्रतिसमरूपता दो रिंगों के बीच का एक नक्शा है जो जोड़ को संरक्षित करता है, लेकिन गुणन के क्रम को उलट देता है। इसलिए φ : XY एक रिंग प्रतिसमरूपता है अगर और केवल अगर:

φ(1) = 1
φ(x + y) = φ(x) + φ(y)
φ(xy) = φ(y)φ(x)

एक्स में सभी एक्स, वाई के लिए।[1] फ़ील्ड K पर बीजगणित के लिए, φ अंतर्निहित सदिश स्थान का K-रैखिक मानचित्र होना चाहिए। यदि अंतर्निहित क्षेत्र में एक अंतर्वलन है, तो इसके बजाय φ को संयुग्म-रैखिक होने के लिए कहा जा सकता है, जैसा कि नीचे संयुग्मित संक्रमण में है।

निवेश

अक्सर ऐसा होता है कि एंटीऑटोमोर्फिज्म इनवोल्यूशन (गणित) हैं, यानी एंटीऑटोमोर्फिज्म का वर्ग पहचान कार्य है; इन्हें भी कहा जाता हैinvolutive antiautomorphismएस। उदाहरण के लिए, किसी भी समूह में वह मानचित्र जो x को उसके व्युत्क्रम तत्व x पर भेजता है−1 एक समावेशी एंटीऑटोमोर्फिज्म है।

एक अनैच्छिक एंटीऑटोमोर्फिज्म वाली अंगूठी को *-अँगूठी कहा जाता है, और *-बीजगणित # उदाहरण।

गुण

यदि स्रोत X या लक्ष्य Y क्रमविनिमेय है, तो एक समरूपतावाद एक समरूपता के समान है।

दो प्रतिसमरूपता की फलन संरचना हमेशा एक समरूपता होती है, क्योंकि क्रम को दो बार उलटने से क्रम बरकरार रहता है। एक होमोमोर्फिज्म के साथ एक प्रतिसमरूपता की रचना एक और प्रतिसमरूपता देती है।

यह भी देखें

संदर्भ

  1. Jacobson, Nathan (1943). अंगूठियों का सिद्धांत. Mathematical Surveys and Monographs. Vol. 2. American Mathematical Society. p. 16. ISBN 0821815024.