प्रतिसमरूपता: Difference between revisions
(→उदाहरण) |
|||
Line 11: | Line 11: | ||
== उदाहरण == | == उदाहरण == | ||
[[समूह सिद्धांत]] में, एक प्रतिसमरूपता दो समूहों के बीच एक | [[समूह सिद्धांत]] में, एक प्रतिसमरूपता दो समूहों के बीच एक प्रतिचित्र है जो गुणन के क्रम को परिवर्तित कर देता है। तो अगर {{nowrap|''φ'' : ''X'' → ''Y''}} एक समूह प्रतिसमरूपता है, | ||
:φ(xy) = φ(y)φ(x) | :φ(xy) = φ(y)φ(x) | ||
''X'' में सभी ''x'', ''y'' के लिए। | |||
वह | वह प्रतिचित्र जो x को ''x''<sup>−1</sup> लिखता है, समूह एंटीऑटोमोर्फिज्म का एक उदाहरण है। एक अन्य महत्वपूर्ण उदाहरण [[रैखिक बीजगणित]] में [[ खिसकाना |परिवर्त ]] प्रचालन है, जो [[पंक्ति सदिश]] को [[स्तंभ सदिश]] में ले जाता है। किसी सदिश-आव्यूह समीकरण को तुल्यमान समीकरण में परिवर्त किया जा सकता है जहां गुणकों का क्रम उत्क्रमित होता है। | ||
आव्यूहों के साथ, परिवर्त प्रतिचित्र द्वारा एंटीऑटोमोर्फिज़्म का एक उदाहरण दिया गया है। चूंकि व्युत्क्रम और मैट्रिक्स परिवर्तन दोनों ही एंटीऑटोमोर्फिज़्म देते हैं, इसलिए उनका संयोजन एक ऑटोमोर्फिज़्म है। इस अंतर्वलन को अक्सर विरोधाभासी प्रतिचित्र कहा जाता है, और यह [[सामान्य रैखिक समूह]] {{nowrap|GL(''n'', ''F'')}} के बाहरी ऑटोमोर्फिज्म का एक उदाहरण प्रदान करता है, जहां F एक क्षेत्र है, सिवाय इसके कि जब {{nowrap|1={{abs|''F''}} = 2}} और {{nowrap|1=''n'' = 1 या 2}}, या {{nowrap|1={{abs|''F''}} = 3}} और {{nowrap|1=''n'' = 1}} (अर्थात, समूहों {{nowrap|GL(1, 2)}}, {{nowrap|GL(2, 2)}}, और {{nowrap|GL(1, 3)}} के लिए) | | |||
[[ अंगूठी सिद्धांत ]] में, एक प्रतिसमरूपता दो रिंगों के बीच का एक | [[ अंगूठी सिद्धांत | रिंग सिद्धांत]] में, एक प्रतिसमरूपता दो रिंगों के बीच का एक प्रतिचित्र है जो योग को संरक्षित करता है, लेकिन गुणन के क्रम को उलट देता है। इसलिए {{nowrap|''φ'' : ''X'' → ''Y''}} एक रिंग प्रतिसमरूपता है अगर और केवल अगर: | ||
:φ(1) = 1 | :φ(1) = 1 | ||
: φ(x + y) = φ(x) + φ(y) | : φ(x + y) = φ(x) + φ(y) |
Revision as of 10:02, 4 June 2023
This article needs additional citations for verification. (January 2010) (Learn how and when to remove this template message) |
गणित में, एक प्रतिसमरूपता (एंटीहोमोमोर्फिज्म) एक प्रकार का फलन है जो गुणन के साथ समुच्चयों पर परिभाषित होता है जो गुणन के क्रम को उलट देता है। एक एंटीऑटोमोर्फिज्म एक एकैकी आच्छादी प्रतिसमरूपता है, यानी एक एंटीसोमोर्फिज्म, एक समुच्चय से लेकर स्वयं तक है। एकैक आच्छादन से यह पता चलता है कि एंटीऑटोमोर्फिज्म में व्युत्क्रम होते हैं, और यह कि एंटीऑटोमोर्फिज्म का व्युत्क्रम भी एक एंटीऑटोमोर्फिज्म होता है।
परिभाषा
अनौपचारिक रूप से, एक प्रतिसमरूपता एक मानचित्र है जो गुणन के क्रम को बदलता है। औपचारिक रूप से, संरचनाओं और के बीच एक प्रतिसमरूपता एक समरूपता है, जहां एक समुच्चय के रूप में के बराबर है, लेकिन इसका गुणन पर परिभाषित के व्युत्क्रम है। पर द्वारा (आम तौर पर अविनिमेय) गुणन को निर्दिष्ट करना, पर गुणन, द्वारा चिह्नित , द्वारा परिभाषित किया गया है। वस्तु को (क्रमशः, विपरीत समूह, विपरीत बीजगणित, विपरीत श्रेणी आदि) के विपरीत वस्तु कहा जाता है।
यह परिभाषा समाकारिता के तुल्य है (मानचित्र लागू करने से पहले या बाद में प्रचालन को व्युत्क्रम कर देना तुल्य है)। औपचारिक रूप से, को भेजना (सेन्डिंग) और मानचित्रों पर सर्वसमिका के रूप में कार्य करना एक फलननिर्धारक (वास्तव में, एक अंतर्वलन) है।
उदाहरण
समूह सिद्धांत में, एक प्रतिसमरूपता दो समूहों के बीच एक प्रतिचित्र है जो गुणन के क्रम को परिवर्तित कर देता है। तो अगर φ : X → Y एक समूह प्रतिसमरूपता है,
- φ(xy) = φ(y)φ(x)
X में सभी x, y के लिए।
वह प्रतिचित्र जो x को x−1 लिखता है, समूह एंटीऑटोमोर्फिज्म का एक उदाहरण है। एक अन्य महत्वपूर्ण उदाहरण रैखिक बीजगणित में परिवर्त प्रचालन है, जो पंक्ति सदिश को स्तंभ सदिश में ले जाता है। किसी सदिश-आव्यूह समीकरण को तुल्यमान समीकरण में परिवर्त किया जा सकता है जहां गुणकों का क्रम उत्क्रमित होता है।
आव्यूहों के साथ, परिवर्त प्रतिचित्र द्वारा एंटीऑटोमोर्फिज़्म का एक उदाहरण दिया गया है। चूंकि व्युत्क्रम और मैट्रिक्स परिवर्तन दोनों ही एंटीऑटोमोर्फिज़्म देते हैं, इसलिए उनका संयोजन एक ऑटोमोर्फिज़्म है। इस अंतर्वलन को अक्सर विरोधाभासी प्रतिचित्र कहा जाता है, और यह सामान्य रैखिक समूह GL(n, F) के बाहरी ऑटोमोर्फिज्म का एक उदाहरण प्रदान करता है, जहां F एक क्षेत्र है, सिवाय इसके कि जब |F| = 2 और n = 1 या 2, या |F| = 3 और n = 1 (अर्थात, समूहों GL(1, 2), GL(2, 2), और GL(1, 3) के लिए) |
रिंग सिद्धांत में, एक प्रतिसमरूपता दो रिंगों के बीच का एक प्रतिचित्र है जो योग को संरक्षित करता है, लेकिन गुणन के क्रम को उलट देता है। इसलिए φ : X → Y एक रिंग प्रतिसमरूपता है अगर और केवल अगर:
- φ(1) = 1
- φ(x + y) = φ(x) + φ(y)
- φ(xy) = φ(y)φ(x)
एक्स में सभी एक्स, वाई के लिए।[1] फ़ील्ड K पर बीजगणित के लिए, φ अंतर्निहित सदिश स्थान का K-रैखिक मानचित्र होना चाहिए। यदि अंतर्निहित क्षेत्र में एक अंतर्वलन है, तो इसके बजाय φ को संयुग्म-रैखिक होने के लिए कहा जा सकता है, जैसा कि नीचे संयुग्मित संक्रमण में है।
निवेश
अक्सर ऐसा होता है कि एंटीऑटोमोर्फिज्म इनवोल्यूशन (गणित) हैं, यानी एंटीऑटोमोर्फिज्म का वर्ग पहचान कार्य है; इन्हें भी कहा जाता हैinvolutive antiautomorphismएस। उदाहरण के लिए, किसी भी समूह में वह मानचित्र जो x को उसके व्युत्क्रम तत्व x पर भेजता है−1 एक समावेशी एंटीऑटोमोर्फिज्म है।
एक अनैच्छिक एंटीऑटोमोर्फिज्म वाली अंगूठी को *-अँगूठी कहा जाता है, और *-बीजगणित # उदाहरण।
गुण
यदि स्रोत X या लक्ष्य Y क्रमविनिमेय है, तो एक समरूपतावाद एक समरूपता के समान है।
दो प्रतिसमरूपता की फलन संरचना हमेशा एक समरूपता होती है, क्योंकि क्रम को दो बार उलटने से क्रम बरकरार रहता है। एक होमोमोर्फिज्म के साथ एक प्रतिसमरूपता की रचना एक और प्रतिसमरूपता देती है।
यह भी देखें
संदर्भ
- ↑ Jacobson, Nathan (1943). अंगूठियों का सिद्धांत. Mathematical Surveys and Monographs. Vol. 2. American Mathematical Society. p. 16. ISBN 0821815024.