मध्यवर्ती तर्क: Difference between revisions
No edit summary |
No edit summary |
||
Line 57: | Line 57: | ||
प्रत्येक मध्यवर्ती लॉजिक L के लिए कई मोडल लॉजिक M हैं जैसे कि L = ρM है । | प्रत्येक मध्यवर्ती लॉजिक L के लिए कई मोडल लॉजिक M हैं जैसे कि L = ρM है । | ||
'''नीचे के तत्व के रूप में इंट्यूशनिस्टिक लॉजिक के साथ एक [[पूर्ण जाली]] बनाते हैं और शीर्ष के रूप में असंगत लॉजिक (सुपरिंट्यूशनिस्टिक लॉजिक्स के स्थिति में) या क्ला''' | |||
== यह भी देखें == | == यह भी देखें == |
Revision as of 16:28, 23 May 2023
गणितीय तर्क में एक अधीक्षणवादी तर्क एक प्रस्तावात्मक तर्क है जो अंतर्ज्ञानवादी तर्क का विस्तार करता है। मौलिक तर्क सबसे शसक्त सुसंगत अधीक्षणवादी तर्क है; इस प्रकार सुसंगत अधीक्षणवादी तर्कों को मध्यवर्ती तर्कशास्त्र कहा जाता है (तर्क अंतर्ज्ञानवादी तर्क और मौलिक तर्क के बीच मध्यवर्ती हैं)।[1]
परिभाषा
एक सुपरिंट्यूशनिस्टिक लॉजिक एक गणनीय सेट में प्रस्तावित सूत्रों का एक सेट एल है
सुपरिंट्यूशनिस्टिक लॉजिक निम्नलिखित गुणों को संतुष्ट करने वाले चर pi के एक गणनीय सेट में प्रस्तावित सूत्रों का एक सेट L है:
चर pi निम्नलिखित गुणों को संतुष्ट करना:
- 1. सभी अंतर्ज्ञानवादी तर्क या स्वयंसिद्धीकरण L के हैं;
- 2. यदि F और G ऐसे सूत्र हैं कि F और F → G दोनों L से संबंधित हैं, तो G भी L से संबंधित है (मूड सेट करना के तहत बंद);
- 3. यदि F(p1, p2, ..., pn) का एक सूत्र है, और G1, G2, ..., Gn कोई सूत्र हैं, तो F(G1, G2, ..., Gn) संबंधित L है (प्रतिस्थापन के तहत बंद)।
ऐसा तर्क मध्यवर्ती है यदि आगे भी
- 4. L सभी सूत्रों का समुच्चय नहीं है।
गुण और उदाहरण
विभिन्न मध्यवर्ती लॉजिक्स की निरंतरता की एक प्रमुखता उपस्थित है। विशिष्ट मध्यवर्ती लॉजिक्स अधिकांशतः एक या एक से अधिक स्वयंसिद्धों को अंतर्ज्ञानवादी तर्क में जोड़कर या एक शब्दार्थ विवरण द्वारा निर्मित किया जाता है। मध्यवर्ती लॉजिक्स के उदाहरणों में सम्मिलित हैं:
- अंतर्ज्ञानवादी तर्क (IPC, Int, IL, H)
- मौलिक तर्क (CPC, Cl, CL): IPC + p ∨ ¬p = IPC + ¬¬p → p = IPC + ((p → q) → p) → p
- अशक्त बहिष्कृत मध्य का तर्क (केसी, वी. ए. जानकोव का तर्क डी मॉर्गन के नियम तर्क[2]): IPC + ¬¬p ∨ ¬p
- कर्ट गोडेल | गोडेल-माइकल डमेट लॉजिक (LC, G): IPC + (p → q) ∨ (q → p)
- जॉर्ज क्रेसेल-हिलेरी पुटनाम लॉजिक (केपी): IPC + (¬p → (q ∨ r)) → ((¬p → q) ∨ (¬p → r))
- यूरी टी. मेदवेदेव की परिमित समस्याओं का तर्क (एलएम, एमएल): फॉर्म के सभी क्रिप्के शब्दार्थों के तर्क के रूप में शब्दार्थ को परिभाषित किया गया है परिमित सेट X के लिए (बूलियन हाइपरक्यूब्स बिना शीर्ष), as of 2015[update] रिकर्सिवली स्वयंसिद्ध होने के लिए नहीं जाना जाता है
- वास्तविकता तर्क
- स्कॉट का तर्क (एसएल): IPC + ((¬¬p → p) → (p ∨ ¬p)) → (¬¬p ∨ ¬p)
- स्मेटानिच का तर्क (SmL): IPC + (¬q → p) → (((p → q) → p) → p)
- बाउंडेड कार्डिनैलिटी के तर्क (BCn):
- बाउंडेड विड्थ के लॉजिक जिसे बाउंडेड एंटी-चेन के लॉजिक के रूप में भी जाना जाता है (BWn, BAn):
- बाउंडेड डेप्थ का तर्क (BDn): IPC + pn ∨ (pn → (pn−1 ∨ (pn−1 → ... → (p2 ∨ (p2 → (p1 ∨ ¬p1)))...)))
- बाउंडेड टॉप विड्थ का लॉजिक (BTWn):
- बाउंडेड ब्रांचिंग के तर्क (Tn, BBn):
- गोडेल एन-वैल्यू लॉजिक्स ('Gn): LC + BCn−1 = LC + BDn−1
सुपरिंट्यूशनिस्टिक या इंटरमीडिएट लॉजिक्स नीचे के तत्व के रूप में इंट्यूशनिस्टिक लॉजिक के साथ एक पूर्ण जाली बनाते हैं और शीर्ष के रूप में असंगत लॉजिक (सुपरिंट्यूशनिस्टिक लॉजिक्स के स्थिति में) या क्लासिकल लॉजिक (इंटरमीडिएट लॉजिक्स के स्थिति में)। सुपरिंट्यूशनिस्टिक लॉजिक्स की जाली में मौलिक तर्क एकमात्र परमाणु (आदेश सिद्धांत) है इंटरमीडिएट लॉजिक्स की जाली में भी एक अनोखा कोटोम होता है जिसका नाम एसएमएल है।
इंटरमीडिएट लॉजिक्स का अध्ययन करने के उपकरण इंट्यूशनिस्टिक लॉजिक के लिए उपयोग किए जाने वाले उपकरणों के समान हैं जैसे क्रिपके सिमेंटिक्स उदाहरण के लिए गोडेल-डमेट तर्क में कुल क्रम के संदर्भ में एक सरल शब्दार्थ विशेषता है।
शब्दार्थ
एक हेटिंग बीजगणित H को देखते हुए H में मान्य प्रस्ताव सूत्रों का सेट एक मध्यवर्ती तर्क है। इसके विपरीत एक मध्यवर्ती तर्क दिए जाने पर इसके लिंडेनबाउम-टार्स्की बीजगणित का निर्माण संभव है जो तब हेटिंग बीजगणित है।
एक अंतर्ज्ञानवादी क्रिपके फ्रेम एफ एक आंशिक रूप से आदेशित सेट है, और एक क्रिप्के मॉडल M एक क्रिप्के फ्रेम है जिसका मूल्यांकन इस प्रकार है F का ऊपरी सेट है। F में मान्य प्रस्ताव सूत्रों का सेट एक मध्यवर्ती तर्क है। एक मध्यवर्ती तर्क L को देखते हुए क्रिप्के मॉडल एम का निर्माण संभव है जैसे कि M का तर्क L है (इस निर्माण को विहित मॉडल कहा जाता है)। इस संपत्ति के साथ एक क्रिपके फ्रेम उपस्थित नहीं हो सकता है किंतु एक सामान्य फ्रेम सदैव होता है।
मोडल लॉजिक्स से संबंध
बता दें कि A एक प्रस्तावक सूत्र है। A का गोडेल-अल्फ्रेड टार्स्की अनुवाद पुनरावर्ती रूप से निम्नानुसार परिभाषित किया गया है:
यदि M एक मॉडल तर्क है जो S4 का विस्तार करता है तो ρM = {A | T(A) ∈ M} एक सुपरिंट्यूशनिस्टिक लॉजिक है और M को ρM का मोडल साथी कहा जाता है। विशेष रूप से:
- IPC = ρS4
- KC = ρS4.2
- LC = ρS4.3
- CPC = ρS5
प्रत्येक मध्यवर्ती लॉजिक L के लिए कई मोडल लॉजिक M हैं जैसे कि L = ρM है ।
नीचे के तत्व के रूप में इंट्यूशनिस्टिक लॉजिक के साथ एक पूर्ण जाली बनाते हैं और शीर्ष के रूप में असंगत लॉजिक (सुपरिंट्यूशनिस्टिक लॉजिक्स के स्थिति में) या क्ला
यह भी देखें
संदर्भ
- ↑ "मध्यवर्ती तर्क". Encyclopedia of Mathematics. Retrieved 19 August 2017.
- ↑ Constructive Logic and the Medvedev Lattice, Sebastiaan A. Terwijn, Notre Dame J. Formal Logic, Volume 47, Number 1 (2006), 73-82.
- Toshio Umezawa. On logics intermediate between intuitionistic and classical predicate logic. Journal of Symbolic Logic, 24(2):141–153, June 1959.
- Alexander Chagrov, Michael Zakharyaschev. Modal Logic. Oxford University Press, 1997.