सामान्यीकरण स्थिरांक: Difference between revisions
(Created page with "{{Use American English|date = March 2019}} {{Short description|Constant a such that af(x) is a probability measure}} {{Lead too short|date=March 2014}} सामान्य...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Constant a such that af(x) is a probability measure}} | {{Short description|Constant a such that af(x) is a probability measure}} | ||
सामान्यीकरण स्थिरांक की अवधारणा संभाव्यता सिद्धांत और गणित के कई अन्य क्षेत्रों में उत्पन्न होती है। किसी प्रायिकता फलन को एक की कुल प्रायिकता वाले संभाव्यता घनत्व फलन में कम करने के लिए सामान्यीकरण स्थिरांक का उपयोग किया जाता है। | सामान्यीकरण स्थिरांक की अवधारणा संभाव्यता सिद्धांत और गणित के कई अन्य क्षेत्रों में उत्पन्न होती है। किसी प्रायिकता फलन को एक की कुल प्रायिकता वाले संभाव्यता घनत्व फलन में कम करने के लिए सामान्यीकरण स्थिरांक का उपयोग किया जाता है। | ||
Line 11: | Line 10: | ||
== उदाहरण == | == उदाहरण == | ||
अगर हम साधारण [[ गाऊसी समारोह ]] से शुरू करते हैं | अगर हम साधारण [[ गाऊसी समारोह |गाऊसी समारोह]] से शुरू करते हैं | ||
<math display="block">p(x)=e^{-x^2/2}, \quad x\in(-\infty,\infty) </math> | <math display="block">p(x)=e^{-x^2/2}, \quad x\in(-\infty,\infty) </math> | ||
हमारे पास संबंधित [[ गॉसियन अभिन्न ]] है | हमारे पास संबंधित [[ गॉसियन अभिन्न |गॉसियन अभिन्न]] है | ||
<math display="block">\int_{-\infty}^\infty p(x) \, dx = \int_{-\infty}^\infty e^{-x^2/2} \, dx = \sqrt{2\pi\,},</math> | <math display="block">\int_{-\infty}^\infty p(x) \, dx = \int_{-\infty}^\infty e^{-x^2/2} \, dx = \sqrt{2\pi\,},</math> | ||
अब अगर हम बाद के [[पारस्परिक मूल्य]] का उपयोग पूर्व के सामान्यीकरण स्थिरांक के रूप में करते हैं, तो एक फ़ंक्शन को परिभाषित करते हैं <math> \varphi(x) </math> जैसा | अब अगर हम बाद के [[पारस्परिक मूल्य]] का उपयोग पूर्व के सामान्यीकरण स्थिरांक के रूप में करते हैं, तो एक फ़ंक्शन को परिभाषित करते हैं <math> \varphi(x) </math> जैसा |
Revision as of 12:13, 18 May 2023
सामान्यीकरण स्थिरांक की अवधारणा संभाव्यता सिद्धांत और गणित के कई अन्य क्षेत्रों में उत्पन्न होती है। किसी प्रायिकता फलन को एक की कुल प्रायिकता वाले संभाव्यता घनत्व फलन में कम करने के लिए सामान्यीकरण स्थिरांक का उपयोग किया जाता है।
परिभाषा
संभाव्यता सिद्धांत में, एक सामान्यीकरण स्थिरांक एक स्थिरांक होता है जिसके द्वारा हर जगह गैर-नकारात्मक फ़ंक्शन को गुणा किया जाना चाहिए ताकि इसके ग्राफ़ के अंतर्गत क्षेत्र 1 हो, उदाहरण के लिए, इसे संभाव्यता घनत्व फ़ंक्शन या प्रायिकता मास फ़ंक्शन बनाने के लिए।[1][2]
उदाहरण
अगर हम साधारण गाऊसी समारोह से शुरू करते हैं
और निरंतर कार्य का सामान्यीकरण स्थिरांक है .
इसी प्रकार,
ध्यान दें कि यदि संभाव्यता घनत्व फ़ंक्शन विभिन्न मापदंडों का एक फ़ंक्शन है, तो इसका सामान्यीकरण स्थिरांक भी होगा। बोल्ट्ज़मैन वितरण के लिए पैरामीट्रिज्ड सामान्यीकरण स्थिरांक सांख्यिकीय यांत्रिकी में एक केंद्रीय भूमिका निभाता है। उस संदर्भ में, सामान्यीकरण स्थिरांक को विभाजन कार्य (सांख्यिकीय यांत्रिकी) कहा जाता है।
बेयस प्रमेय
बेज़ की प्रमेय कहती है कि पश्च संभाव्यता माप पूर्व संभाव्यता माप और संभावना फलन के गुणनफल के समानुपाती होता है। आनुपातिक का अर्थ है कि किसी को पूरे स्थान पर माप 1 निर्दिष्ट करने के लिए एक सामान्यीकृत स्थिरांक से गुणा या भाग करना चाहिए, अर्थात, एक संभाव्यता माप प्राप्त करने के लिए। एक साधारण असतत मामले में हमारे पास है
जहां पी (एच0) पूर्व संभावना है कि परिकल्पना सत्य है; पी(डी|एच0) दिए गए डेटा की सशर्त संभावना है कि परिकल्पना सत्य है, लेकिन यह देखते हुए कि डेटा ज्ञात है, यह डेटा दिए गए परिकल्पना (या इसके पैरामीटर) की संभावना कार्य है; पी (एच0|D) पश्च संभाव्यता है कि डेटा दिए जाने पर परिकल्पना सत्य है। पी (डी) डेटा के उत्पादन की संभावना होनी चाहिए, लेकिन इसकी गणना करना मुश्किल है, इसलिए इस संबंध का वर्णन करने का एक वैकल्पिक तरीका आनुपातिकता में से एक है:
चूँकि P(H|D) एक प्रायिकता है, सभी संभावित (परस्पर अनन्य) परिकल्पनाओं का योग 1 होना चाहिए, जिससे यह निष्कर्ष निकलता है कि
इस स्थिति में, मान का गुणनात्मक व्युत्क्रम
सामान्यीकरण स्थिरांक है।[5] एक समाकलन द्वारा योग को प्रतिस्थापित करके इसे असंख्य परिकल्पनाओं से बेशुमार रूप से अनेक तक बढ़ाया जा सकता है।
संक्षिप्तता के लिए, व्यावहारिक उद्देश्यों के लिए सामान्यीकरण स्थिरांक का आकलन करने के कई तरीके हैं। तरीकों में ब्रिज सैंपलिंग तकनीक, भोली मोंटे कार्लो अनुमानक, सामान्यीकृत हार्मोनिक माध्य अनुमानक और महत्व नमूनाकरण शामिल हैं।[6]
गैर-संभाव्य उपयोग
लीजेंड्रे बहुपदों को अंतराल [−1, 1] पर समान माप के संबंध में ओर्थोगोनालिटी की विशेषता है और तथ्य यह है कि उन्हें सामान्यीकृत किया जाता है ताकि 1 पर उनका मान 1 हो। वह स्थिरांक जिसके द्वारा एक बहुपद को गुणा करता है, इसलिए इसका मूल्य 1 एक सामान्यीकरण स्थिरांक है।
ऑर्थोनॉर्मल फ़ंक्शंस सामान्यीकृत होते हैं जैसे कि
अटल 1/√2 का उपयोग अतिशयोक्तिपूर्ण कार्यों को स्थापित करने के लिए किया जाता है # एक अतिशयोक्तिपूर्ण क्षेत्र के आसन्न और विपरीत पक्षों की लंबाई से परिपत्र कार्यों cos और sinh के साथ तुलना # अतिशयोक्तिपूर्ण त्रिकोण।
यह भी देखें
टिप्पणियाँ
- ↑ Continuous Distributions at University of Alabama.
- ↑ Feller, 1968, p. 22.
- ↑ Feller, 1968, p. 174.
- ↑ Feller, 1968, p. 156.
- ↑ Feller, 1968, p. 124.
- ↑ Gronau, Quentin (2020). "bridgesampling: An R Package for Estimating Normalizing Constants" (PDF). The Comprehensive R Archive Network. Retrieved September 11, 2021.
{{cite web}}
: CS1 maint: url-status (link)
संदर्भ
- Continuous Distributions at Department of Mathematical Sciences: University of Alabama in Huntsville
- Feller, William (1968). An Introduction to Probability Theory and its Applications (volume I). John Wiley & Sons. ISBN 0-471-25708-7.