सामान्यीकरण स्थिरांक: Difference between revisions
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
== परिभाषा == | == परिभाषा == | ||
संभाव्यता सिद्धांत में, एक सामान्यीकरण स्थिरांक एक स्थिरांक होता है जिसके द्वारा हर जगह गैर-नकारात्मक | संभाव्यता सिद्धांत में, एक सामान्यीकरण स्थिरांक एक स्थिरांक होता है जिसके द्वारा हर जगह गैर-नकारात्मक कार्य को गुणा किया जाना चाहिए जिससे इसके ग्राफ़ के अंतर्गत क्षेत्र 1 हो, उदाहरण के लिए, इसे संभाव्यता घनत्व कार्य या प्रायिकता मास कार्य बनाने के लिए है।<ref>''Continuous Distributions'' at University of Alabama.</ref><ref>Feller, 1968, p. 22.</ref> | ||
'''रांक की अवधारणा संभाव्यता सिद्धांत और गणित के कई अन्य क्षेत्रों में उत्पन्न होती है। किसी प्रायिकता फलन को एक की कुल प्रायिकता वाले संभाव्यता घनत्व फलन में कम कर<br />''' | |||
== उदाहरण == | |||
यदि हम साधारण [[ गाऊसी समारोह |गाऊसी कार्य]] से प्रारंभ करते हैं | |||
<math display="block">p(x)=e^{-x^2/2}, \quad x\in(-\infty,\infty) </math> | <math display="block">p(x)=e^{-x^2/2}, \quad x\in(-\infty,\infty) </math> | ||
हमारे पास संबंधित [[ गॉसियन अभिन्न |गॉसियन अभिन्न]] है | हमारे पास संबंधित [[ गॉसियन अभिन्न |गॉसियन अभिन्न]] है | ||
<math display="block">\int_{-\infty}^\infty p(x) \, dx = \int_{-\infty}^\infty e^{-x^2/2} \, dx = \sqrt{2\pi\,},</math> | <math display="block">\int_{-\infty}^\infty p(x) \, dx = \int_{-\infty}^\infty e^{-x^2/2} \, dx = \sqrt{2\pi\,},</math> | ||
अब | अब यदि हम बाद वाले के व्युत्क्रम मान को पूर्व के सामान्यीकरण स्थिरांक के रूप में उपयोग करते हैं, तो <math> \varphi(x) </math> को इस रूप में परिभाषित करते हैं | ||
<math display="block">\varphi(x) = \frac{1}{\sqrt{2\pi\,}} p(x) = \frac{1}{\sqrt{2\pi\,}} e^{-x^2/2} </math> | <math display="block">\varphi(x) = \frac{1}{\sqrt{2\pi\,}} p(x) = \frac{1}{\sqrt{2\pi\,}} e^{-x^2/2} </math> | ||
जिससे गॉसियन फलन का समाकल इकाई हो | |||
<math display="block">\int_{-\infty}^\infty \varphi(x) \, dx = \int_{-\infty}^\infty \frac{1}{\sqrt{2\pi\,}} e^{-x^2/2} \, dx = 1 </math> | <math display="block">\int_{-\infty}^\infty \varphi(x) \, dx = \int_{-\infty}^\infty \frac{1}{\sqrt{2\pi\,}} e^{-x^2/2} \, dx = 1 </math> | ||
तब फलन <math> \varphi(x) </math> प्रायिकता घनत्व फलन है।<ref>Feller, 1968, p. 174.</ref> यह मानक सामान्य वितरण का घनत्व है। (मानक, इस स्थिति में, इसका अर्थ है कि अपेक्षित मान 0 है और भिन्नता 1 है।) | |||
और | और नियतांक <math display="inline"> \frac{1}{\sqrt{2\pi}} </math> फलन <math>p(x)</math> का सामान्यीकरण स्थिरांक है। | ||
इसी प्रकार, | इसी प्रकार, | ||
Line 28: | Line 28: | ||
सभी गैर-नकारात्मक पूर्णांकों के सेट पर एक संभाव्यता द्रव्यमान कार्य है।<ref>Feller, 1968, p. 156.</ref> यह अपेक्षित मान λ के साथ प्वासों बंटन का प्रायिकता द्रव्यमान फलन है। | सभी गैर-नकारात्मक पूर्णांकों के सेट पर एक संभाव्यता द्रव्यमान कार्य है।<ref>Feller, 1968, p. 156.</ref> यह अपेक्षित मान λ के साथ प्वासों बंटन का प्रायिकता द्रव्यमान फलन है। | ||
ध्यान दें कि यदि संभाव्यता घनत्व | ध्यान दें कि यदि संभाव्यता घनत्व कार्य विभिन्न मापदंडों का एक कार्य है, तो इसका सामान्यीकरण स्थिरांक भी होगा। बोल्ट्ज़मैन वितरण के लिए पैरामीट्रिज्ड सामान्यीकरण स्थिरांक [[सांख्यिकीय यांत्रिकी]] में एक केंद्रीय भूमिका निभाता है। उस संदर्भ में, सामान्यीकरण स्थिरांक को विभाजन कार्य (सांख्यिकीय यांत्रिकी) कहा जाता है। | ||
== बेयस प्रमेय == | == बेयस प्रमेय == | ||
बेज़ की प्रमेय कहती है कि पश्च संभाव्यता माप पूर्व संभाव्यता माप और संभावना फलन के गुणनफल के समानुपाती होता है। आनुपातिक का अर्थ है कि किसी को पूरे स्थान पर माप 1 निर्दिष्ट करने के लिए एक सामान्यीकृत स्थिरांक से गुणा या भाग करना चाहिए, अर्थात, एक संभाव्यता माप प्राप्त करने के | बेज़ की प्रमेय कहती है कि पश्च संभाव्यता माप पूर्व संभाव्यता माप और संभावना फलन के गुणनफल के समानुपाती होता है। आनुपातिक का अर्थ है कि किसी को पूरे स्थान पर माप 1 निर्दिष्ट करने के लिए एक सामान्यीकृत स्थिरांक से गुणा या भाग करना चाहिए, अर्थात, एक संभाव्यता माप प्राप्त करने के लिए एक साधारण असतत स्थिति में हमारे पास है | ||
:<math>P(H_0|D) = \frac{P(D|H_0)P(H_0)}{P(D)}</math> | :<math>P(H_0|D) = \frac{P(D|H_0)P(H_0)}{P(D)}</math> | ||
जहां | जहां P(H<sub>0</sub>) पूर्व संभावना है कि परिकल्पना सत्य है; P(D|H<sub>0</sub>) दिए गए डेटा की नियमित संभावना है कि परिकल्पना सत्य है, किंतु यह देखते हुए कि डेटा ज्ञात है, यह डेटा दिए गए परिकल्पना (या इसके पैरामीटर) की संभावना कार्य है; P(H<sub>0</sub>|D) पश्च संभाव्यता है कि डेटा दिए जाने पर परिकल्पना सत्य है। P(D) डेटा के उत्पादन की संभावना होनी चाहिए, किंतु इसकी गणना करना कठिन है, इसलिए इस संबंध का वर्णन करने का एक वैकल्पिक विधि आनुपातिकता में से एक है: | ||
:<math>P(H_0|D) \propto P(D|H_0)P(H_0).</math> | :<math>P(H_0|D) \propto P(D|H_0)P(H_0).</math> | ||
Line 43: | Line 43: | ||
:<math>P(D)=\sum_i P(D|H_i)P(H_i) \;</math> | :<math>P(D)=\sum_i P(D|H_i)P(H_i) \;</math> | ||
सामान्यीकरण स्थिरांक है।<ref>Feller, 1968, p. 124.</ref> एक समाकलन द्वारा योग को प्रतिस्थापित करके इसे असंख्य परिकल्पनाओं से | सामान्यीकरण स्थिरांक है।<ref>Feller, 1968, p. 124.</ref> एक समाकलन द्वारा योग को प्रतिस्थापित करके इसे असंख्य परिकल्पनाओं से अगणनीय रूप से अनेक तक बढ़ाया जा सकता है। | ||
संक्षिप्तता के लिए, | संक्षिप्तता के लिए, प्रायोगिक उद्देश्यों के लिए सामान्यीकरण स्थिरांक का आकलन करने के कई विधि हैं। विधि में ब्रिज सैंपलिंग विधि, भोली मोंटे कार्लो अनुमानक, सामान्यीकृत हार्मोनिक माध्य अनुमानक और महत्व नमूनाकरण सम्मिलित हैं।<ref>{{Cite web|last=Gronau|first=Quentin|date=2020|title=bridgesampling: An R Package for Estimating Normalizing Constants|url=https://cran.r-project.org/web/packages/bridgesampling/vignettes/bridgesampling_paper.pdf|url-status=live|access-date=September 11, 2021|website=The Comprehensive R Archive Network}}</ref> | ||
== गैर-संभाव्य उपयोग == | == गैर-संभाव्य उपयोग == | ||
[[लीजेंड्रे बहुपद]] | [[लीजेंड्रे बहुपद]] को अंतराल [−1, 1] पर समान माप के संबंध में [[ओर्थोगोनालिटी]] की विशेषता है और तथ्य यह है कि उन्हें सामान्यीकृत किया जाता है जिससे 1 पर उनका मान 1 हो वह स्थिरांक जिसके द्वारा एक बहुपद को गुणा करता है, इसलिए इसका मान 1 एक सामान्यीकरण स्थिरांक है। | ||
[[ऑर्थोनॉर्मल]] | [[ऑर्थोनॉर्मल]] कार्य सामान्यीकृत होते हैं जैसे कि <math display="block">\langle f_i , \, f_j \rangle = \, \delta_{i,j}</math> कुछ आंतरिक उत्पाद {{math|⟨''f'', ''g''⟩}} के संबंध में | ||
निरंतर {{math|1/{{radic|2}}}} का उपयोग अतिशयोक्तिपूर्ण त्रिकोण के आसन्न और विपरीत पक्षों की लंबाई से अतिशयोक्तिपूर्ण कार्यों cos और sinh को स्थापित करने के लिए किया जाता है। | |||
== यह भी देखें == | == यह भी देखें == |
Revision as of 12:29, 18 May 2023
सामान्यीकरण स्थिरांक की अवधारणा संभाव्यता सिद्धांत और गणित के कई अन्य क्षेत्रों में उत्पन्न होती है। किसी प्रायिकता फलन को एक की कुल प्रायिकता वाले संभाव्यता घनत्व फलन में कम करने के लिए सामान्यीकरण स्थिरांक का उपयोग किया जाता है।
परिभाषा
संभाव्यता सिद्धांत में, एक सामान्यीकरण स्थिरांक एक स्थिरांक होता है जिसके द्वारा हर जगह गैर-नकारात्मक कार्य को गुणा किया जाना चाहिए जिससे इसके ग्राफ़ के अंतर्गत क्षेत्र 1 हो, उदाहरण के लिए, इसे संभाव्यता घनत्व कार्य या प्रायिकता मास कार्य बनाने के लिए है।[1][2]
रांक की अवधारणा संभाव्यता सिद्धांत और गणित के कई अन्य क्षेत्रों में उत्पन्न होती है। किसी प्रायिकता फलन को एक की कुल प्रायिकता वाले संभाव्यता घनत्व फलन में कम कर
उदाहरण
यदि हम साधारण गाऊसी कार्य से प्रारंभ करते हैं
और नियतांक फलन का सामान्यीकरण स्थिरांक है।
इसी प्रकार,
ध्यान दें कि यदि संभाव्यता घनत्व कार्य विभिन्न मापदंडों का एक कार्य है, तो इसका सामान्यीकरण स्थिरांक भी होगा। बोल्ट्ज़मैन वितरण के लिए पैरामीट्रिज्ड सामान्यीकरण स्थिरांक सांख्यिकीय यांत्रिकी में एक केंद्रीय भूमिका निभाता है। उस संदर्भ में, सामान्यीकरण स्थिरांक को विभाजन कार्य (सांख्यिकीय यांत्रिकी) कहा जाता है।
बेयस प्रमेय
बेज़ की प्रमेय कहती है कि पश्च संभाव्यता माप पूर्व संभाव्यता माप और संभावना फलन के गुणनफल के समानुपाती होता है। आनुपातिक का अर्थ है कि किसी को पूरे स्थान पर माप 1 निर्दिष्ट करने के लिए एक सामान्यीकृत स्थिरांक से गुणा या भाग करना चाहिए, अर्थात, एक संभाव्यता माप प्राप्त करने के लिए एक साधारण असतत स्थिति में हमारे पास है
जहां P(H0) पूर्व संभावना है कि परिकल्पना सत्य है; P(D|H0) दिए गए डेटा की नियमित संभावना है कि परिकल्पना सत्य है, किंतु यह देखते हुए कि डेटा ज्ञात है, यह डेटा दिए गए परिकल्पना (या इसके पैरामीटर) की संभावना कार्य है; P(H0|D) पश्च संभाव्यता है कि डेटा दिए जाने पर परिकल्पना सत्य है। P(D) डेटा के उत्पादन की संभावना होनी चाहिए, किंतु इसकी गणना करना कठिन है, इसलिए इस संबंध का वर्णन करने का एक वैकल्पिक विधि आनुपातिकता में से एक है:
चूँकि P(H|D) एक प्रायिकता है, सभी संभावित (परस्पर अनन्य) परिकल्पनाओं का योग 1 होना चाहिए, जिससे यह निष्कर्ष निकलता है कि
इस स्थिति में, मान का गुणनात्मक व्युत्क्रम
सामान्यीकरण स्थिरांक है।[5] एक समाकलन द्वारा योग को प्रतिस्थापित करके इसे असंख्य परिकल्पनाओं से अगणनीय रूप से अनेक तक बढ़ाया जा सकता है।
संक्षिप्तता के लिए, प्रायोगिक उद्देश्यों के लिए सामान्यीकरण स्थिरांक का आकलन करने के कई विधि हैं। विधि में ब्रिज सैंपलिंग विधि, भोली मोंटे कार्लो अनुमानक, सामान्यीकृत हार्मोनिक माध्य अनुमानक और महत्व नमूनाकरण सम्मिलित हैं।[6]
गैर-संभाव्य उपयोग
लीजेंड्रे बहुपद को अंतराल [−1, 1] पर समान माप के संबंध में ओर्थोगोनालिटी की विशेषता है और तथ्य यह है कि उन्हें सामान्यीकृत किया जाता है जिससे 1 पर उनका मान 1 हो वह स्थिरांक जिसके द्वारा एक बहुपद को गुणा करता है, इसलिए इसका मान 1 एक सामान्यीकरण स्थिरांक है।
ऑर्थोनॉर्मल कार्य सामान्यीकृत होते हैं जैसे कि
निरंतर 1/√2 का उपयोग अतिशयोक्तिपूर्ण त्रिकोण के आसन्न और विपरीत पक्षों की लंबाई से अतिशयोक्तिपूर्ण कार्यों cos और sinh को स्थापित करने के लिए किया जाता है।
यह भी देखें
टिप्पणियाँ
- ↑ Continuous Distributions at University of Alabama.
- ↑ Feller, 1968, p. 22.
- ↑ Feller, 1968, p. 174.
- ↑ Feller, 1968, p. 156.
- ↑ Feller, 1968, p. 124.
- ↑ Gronau, Quentin (2020). "bridgesampling: An R Package for Estimating Normalizing Constants" (PDF). The Comprehensive R Archive Network. Retrieved September 11, 2021.
{{cite web}}
: CS1 maint: url-status (link)
संदर्भ
- Continuous Distributions at Department of Mathematical Sciences: University of Alabama in Huntsville
- Feller, William (1968). An Introduction to Probability Theory and its Applications (volume I). John Wiley & Sons. ISBN 0-471-25708-7.