फ्लैट नो-लीड पैकेज: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 21: Line 21:


== लाभ ==
== लाभ ==
यह संवेष्‍टन विभिन्न प्रकार के लाभ प्रदान करता है जिसमें कम लीड प्रेरकत्व, चिप मापन फुटप्रिंट के निकट एक छोटा आकार, पतली रूपरेखा और कम भार सम्मिलित है। यह पीसीबी अनुरेख अनुमार्गण को सरल बनाने के लिए परिधि आई/ओ पैड का भी उपयोग करता है, और अनावृत कॉपर डाई-पैड तकनीक ठीक ऊष्मीय और विद्युत निष्पादन प्रदान करती है। ये विशेषताएं क्यूएफएन को कई नवीन अनुप्रयोगों के लिए एक आदर्श विकल्प बनाती हैं जहां आकार, भार, ऊष्मीय और विद्युत निष्पादन महत्वपूर्ण हैं।
यह संवेष्‍टन विभिन्न प्रकार के लाभ प्रदान करता है जिसमें कम लीड प्रेरकत्व, चिप मापन फुटप्रिंट के निकट एक छोटा आकार, तनु रूपरेखा और कम भार सम्मिलित है। यह पीसीबी अनुरेख अनुमार्गण को सरल बनाने के लिए परिधि आई/ओ पैड का भी उपयोग करता है, और अनावृत कॉपर डाई-पैड तकनीक ठीक ऊष्मीय और विद्युत निष्पादन प्रदान करती है। ये विशेषताएं क्यूएफएन को कई नवीन अनुप्रयोगों के लिए एक आदर्श विकल्प बनाती हैं जहां आकार, भार, ऊष्मीय और विद्युत निष्पादन महत्वपूर्ण हैं।


== डिजाइन, निर्माण, और विश्वसनीयता आक्षेप ==
== डिजाइन, निर्माण, और विश्वसनीयता आक्षेप ==
Line 44: Line 44:


== प्रकार ==
== प्रकार ==
अलग-अलग निर्माता इस संवेष्‍टन के लिए अलग-अलग नामों का उपयोग करते हैं: एमएल (माइक्रो-लीडफ्रेम) बनाम एफएन (समतल नो-लीड), इसके अतिरिक्त चारों पक्षों (चतुर्थ) पर पैड के साथ संस्करण हैं और मात्र दो ओर (दोहरी) पर पैड हैं, मोटाई सामान्य संवेष्‍टन के लिए 0.9–1.0 मिमी और अत्यधिक पतले के लिए 0.4 मिमी के बीच भिन्न होती है। संक्षेप में सम्मिलित हैं:
अलग-अलग निर्माता इस संवेष्‍टन के लिए अलग-अलग नामों का उपयोग करते हैं: एमएल (माइक्रो-लीडफ्रेम) बनाम एफएन (समतल नो-लीड), इसके अतिरिक्त चारों पक्षों (चतुर्थ) पर पैड के साथ संस्करण हैं और मात्र दो ओर (दोहरी) पर पैड हैं, मोटाई सामान्य संवेष्‍टन के लिए 0.9–1.0 मिमी और अत्यधिक तनु के लिए 0.4 मिमी के बीच भिन्न होती है। संक्षेप में सम्मिलित हैं:
{| class="wikitable"
{| class="wikitable"
! colspan="2" | संवेष्‍टन !! Manufacturer
! colspan="2" | संवेष्‍टन !! विनिर्माता
|-
|-
| डीएफएन || dual flat no-lead package || Atmel
| डीएफएन || द्वितीय-समतल नो-लीड संवेष्‍टन || एटमेल
|-
|-
| डीक्यूएफएन || dual quad flat no-lead package || Atmel
| डीक्यूएफएन || द्वितीय-चतुर्थ समतल नो-लीड संवेष्‍टन || एटमेल
|-
|-
| सीडीएफएन || || [[:de:IC-Haus|iC-Haus]]  
| सीडीएफएन || || [[:de:IC-Haus|आईसी हौस]]
|-
|-
| टीडीएफएन || thin dual flat no-lead package ||
| टीडीएफएन || तनु द्वितीय-समतल नो-लीड संवेष्‍टन ||
|-
|-
| यूटीडीएफएन || ultra-thin dual flat no-lead package ||
| यूटीडीएफएन || अति-तनु द्वितीय-समतल नो-लीड संवेष्‍टन ||
|-
|-
| एक्सडीएफएन || extremely thin dual flat no-lead package ||
| एक्सडीएफएन || अत्यंत तनु द्वितीय-समतल नो-लीड संवेष्‍टन ||
|-
|-
| क्यूएफएन || quad flat no-lead package || [[Amkor Technology]]
| क्यूएफएन || चतुर्थ समतल नो-लीड संवेष्‍टन || [[Amkor Technology|अमकोर तकनीक]]
|-
|-
| क्यूएफएन-टीईपी || quad flat no-lead package with top-exposed pad ||
| क्यूएफएन-टीईपी || शीर्ष- अनावृत पैड के साथ चतुर्थ समतल नो-लीड ||
|-
|-
| टीक्यूएफएन || thin quad flat no-lead package ||
| टीक्यूएफएन || तनु चतुर्थ समतल नो-लीड संवेष्‍टन ||
|-
|-
| एलएलपी || leadless leadframe package || [[National Semiconductor]]
| एलएलपी || लीडरहित लीडफ्रेम संवेष्‍टन || [[National Semiconductor|राष्ट्रीय अर्धचालक]]
|-
|-
| एलपीसीसी || leadless plastic chip carrier || ASAT Holdings
| एलपीसीसी || लीडरहित प्लास्टिक चिप वाहक || एएसएटी होल्डिंग्स
|-
|-
| एमएलएफ || micro-leadframe || Amkor Technology and Atmel
| एमएलएफ || माइक्रो लीड फ्रेम || अमकोर तकनीक और एटमेल
|-
|-
| एमएलपीडी || micro-leadframe package dual ||
| एमएलपीडी || माइक्रो लीड फ्रेम संवेष्‍टन द्वितीय ||
|-
|-
| एमएलपीएम || micro-leadframe package micro ||
| एमएलपीएम || माइक्रो लीड फ्रेम संवेष्‍टन माइक्रो ||
|-
|-
| एमएलपीक्यू || micro-leadframe package quad ||
| एमएलपीक्यू || माइक्रो लीड फ्रेम संवेष्‍टन चतुर्थ ||
|-
|-
| डीआरएमएलएफ || dual-row micro-leadframe package || [[Amkor Technology]]
| डीआरएमएलएफ || द्वितीय-पंक्ति माइक्रो लीड फ्रेम संवेष्‍टन || [[Amkor Technology|अमकोर तकनीक]]
|-
|-
|डीआरक्यूएफएन
|डीआरक्यूएफएन
|dual-row quad flat no-lead
|द्वितीय-पंक्ति चतुर्थ समतल नो-लीड
|[[Microchip Technology]]
|[[Microchip Technology|माइक्रोचिप तकनीक]]
|-
|-
| वीक्यूएफएन/डब्ल्यूक्यूएफएन || very thin quad flat no-lead || [[Texas Instruments]] and others (such as Atmel)
| वीक्यूएफएन/डब्ल्यूक्यूएफएन || अति तनु चतुर्थ समतल नो-लीड || [[Texas Instruments|टेक्सस उपकरण]] और अन्य (जैसे कि एटमेल)
|-
|-
|एचवीक्यूएफएन
|एचवीक्यूएफएन
|Heatsink Very-thin Quad Flat package
|ऊष्माशोषी अति-तनु चतुर्थ समतल संवेष्‍टन
|
|
|-
|-
| यूडीएफएन|| ultra dual flat no-lead || [[Microchip Technology]]
| यूडीएफएन|| अति द्वितीय समतल नो-लीड || [[Microchip Technology|माइक्रोचिप तकनीक]]
|-
|-
| यूक्यूएफएन || ultrathin quad flat no-lead || [[Texas Instruments]] and [[Microchip Technology]]
| यूक्यूएफएन || अतितनु चतुर्थ समतल नो-लीड || [[Texas Instruments|टेक्सस उपकरण]] और [[Microchip Technology|माइक्रोचिप तकनीक]]
|}
|}


[[Image:Ic-package-MLP-28L.svg|right|thumb|माइक्रो लीड फ्रेम संवेष्‍टन]]माइक्रो लीड फ्रेम संवेष्‍टन (MLP) इंटीग्रेटेड परिपथ क्यूएफएन संवेष्‍टन का एक परिवार है, जिसका उपयोग [[ भूतल पर्वत प्रौद्योगिकी |भूतल पर्वत प्रौद्योगिकी]] [[ इलेक्ट्रानिक्स |इलेक्ट्रानिक्स]] परिपथ डिजाइन में किया जाता है। यह 3 संस्करणों में उपलब्ध है जो MLPQ (Q का अर्थ ''चतुर्थ'' है), MLPM (M का अर्थ ''माइक्रो'' है), और MLPD (D का अर्थ 'द्वितीय'' है)। ऊष्मीय निष्पादन को ठीक बनाने के लिए इन संवेष्‍टनों में सामान्यतः एक विवृत डाई अटैच पैड होता है। यह संवेष्‍टन निर्माण में चिप मापन संवेष्‍टन (सीएसपी) के समान है। MLPD को [[छोटे-रूपरेखा एकीकृत सर्किट|छोटे-रूपरेखा एकीकृत परिपथ]] (SOIC) संवेष्‍टनों के लिए पदचिह्न-संगत प्रतिस्थापन प्रदान करने के लिए डिज़ाइन किया गया है।''
[[Image:Ic-package-MLP-28L.svg|right|thumb|माइक्रो लीड फ्रेम संवेष्‍टन]]माइक्रो लीड फ्रेम संवेष्‍टन (एमएलपी) इंटीग्रेटेड परिपथ क्यूएफएन संवेष्‍टन का एक परिवार है, जिसका उपयोग [[ भूतल पर्वत प्रौद्योगिकी |भूतल पर्वत तकनीक]] [[ इलेक्ट्रानिक्स |इलेक्ट्रानिक्स]] परिपथ डिजाइन में किया जाता है। यह 3 संस्करणों में उपलब्ध है जो एमएलपीक्यू (क्यू का अर्थ ''चतुर्थ'' है), एमएलपीएम (एम का अर्थ ''माइक्रो'' है), और एमएलपीडी (डी का अर्थ 'द्वितीय'' है)। ऊष्मीय निष्पादन को ठीक बनाने के लिए इन संवेष्‍टनों में सामान्यतः एक विवृत डाई अटैच पैड होता है। यह संवेष्‍टन निर्माण में चिप मापन संवेष्‍टन (सीएसपी) के समान है। एमएलपीडी को [[छोटे-रूपरेखा एकीकृत सर्किट|छोटे-रूपरेखा एकीकृत परिपथ]] (एसओआईसी) संवेष्‍टनों के लिए पदचिह्न-संगत प्रतिस्थापन प्रदान करने के लिए डिज़ाइन किया गया है।''


माइक्रो लीड फ्रेम (एमएलएफ) कॉपर लीडफ्रेम कार्यद्रव के साथ चिप मापन संवेष्‍टन प्लास्टिक संपुटित संवेष्‍टन के निकट है। यह संवेष्‍टन मुद्रित परिपथ बोर्ड को विद्युत संपर्क प्रदान करने के लिए संवेष्‍टन के तल पर परिधि भूमि का उपयोग करता है। डाई अटैच पैडल को संवेष्‍टन की सतह के नीचे उजागर किया जाता है ताकि परिपथ बोर्ड को सीधे टांका करने पर एक कुशल ताप पथ प्रदान किया जा सके। यह डाउन बन्धन के उपयोग या प्रवाहकीय डाई अटैच सामग्री के माध्यम से विद्युत संपर्क द्वारा स्थिर जमीन को भी सक्षम बनाता है।
माइक्रो लीड फ्रेम (एमएलएफ) कॉपर लीडफ्रेम कार्यद्रव के साथ चिप मापन संवेष्‍टन प्लास्टिक संपुटित संवेष्‍टन के निकट है। यह संवेष्‍टन मुद्रित परिपथ बोर्ड को विद्युत संपर्क प्रदान करने के लिए संवेष्‍टन के तल पर परिधि भूमि का उपयोग करता है। डाई अटैच पैडल को संवेष्‍टन की सतह के नीचे उजागर किया जाता है ताकि परिपथ बोर्ड को सीधे टांका करने पर एक कुशल ताप पथ प्रदान किया जा सके। यह डाउन बन्धन के उपयोग या प्रवाहकीय डाई अटैच सामग्री के माध्यम से विद्युत संपर्क द्वारा स्थिर जमीन को भी सक्षम बनाता है।
Line 110: Line 110:


==बाहरी संबंध==
==बाहरी संबंध==
* [http://www.onsemi.com/pub/Collateral/AND8086-D.PDF Board mounting notes for क्यूएफएन packages]
* [http://www.onsemi.com/pub/Collateral/AND8086-D.PDF Board mounting notes for क्यूएफएन संवेष्‍टनs]
* [https://amkor.com/packaging/leadframe/microleadframe/ MicroLeadFrame®] from [[Amkor Technology]]
* [https://amkor.com/packaging/leadframe/microleadframe/ Microलीडफ्रेम®] from [[Amkor Technology|अमकोर तकनीक]]
* [https://amkor.com/technology/edge-protection/ Edge Protection Technology for क्यूएफएन Packages] from [[Amkor Technology]]
* [https://amkor.com/technology/edge-protection/ Edge Protection Technology for क्यूएफएन संवेष्‍टनs] from [[Amkor Technology|अमकोर तकनीक]]
* [http://www.chipscalereview.com/issues/0107/index.php ChipScale Review] {{Webarchive|url=https://web.archive.org/web/20110930184744/http://www.chipscalereview.com/issues/0107/index.php |date=2011-09-30 }} magazine, July - August 2000.]
* [http://www.chipscalereview.com/issues/0107/index.php ChipScale Review] {{Webarchive|url=https://web.archive.org/web/20110930184744/http://www.chipscalereview.com/issues/0107/index.php |date=2011-09-30 }} magazine, July - August 2000.]
* [http://cds.linear.com/docs/en/packaging/Carsem%20MLP%20users%20guide.pdf Linear Technology - क्यूएफएन Package Users Guide]
* [http://cds.linear.com/docs/en/packaging/Carsem%20MLP%20users%20guide.pdf Linear Technology - क्यूएफएन संवेष्‍टन Users Guide]


{{Semiconductor packages}}
{{Semiconductor packages}}

Revision as of 23:03, 8 June 2023

28-पिन क्यूएफएन, संपर्क और ऊष्मीय/ग्राउंड पैड दिखाने के लिए उल्टा

समतल नो-लीड संवेष्‍टन जैसे चतुर्थ-समतल नो-लीड (क्यूएफएन) और द्वितीय-समतल नो-लीड (डीएफएन) भौतिक रूप से और विद्युत रूप से एकीकृत परिपथ को मुद्रित परिपथ बोर्ड से जोड़ते हैं। समतल नो-लीड, जिसे माइक्रो लीडफ्रेम (एमएलएफ) और एसओएन (छोटे रूपरेखा नो लीड) के रूप में भी जाना जाता है, एक सतह-माउंट तकनीक है, जो कई संवेष्‍टन तकनीकों में से एक है जो एकीकृत परिपथ को बिना छिद्र के माध्यम से तकनीक के मुद्रित परिपथ बोर्डों की सतहों से जोड़ती है। समतल नो-लीड एक निकट चिप पैमाने संवेष्‍टन प्लास्टिक संपुटित संवेष्‍टन है जो तलीय कॉपर संवाहक लीड फ्रेम कार्यद्रव के साथ बनाया गया है। संवेष्‍टन के तल पर परिधि भूमि मुद्रित परिपथ बोर्ड को विद्युत संपर्क प्रदान करती है।[1] समतल नो-लीड संवेष्‍टन सामान्यतः, परन्तु सदैव नहीं, एकीकृत परिपथ (पीसीबी में) से ऊष्मा स्थानांतरण में सुधार करने के लिए एक विवृत ऊष्मीय प्रवाहकीय पैड सम्मिलित होता है। ऊष्मीय पैड में धातु वाया ( इलेक्ट्रानिकी) द्वारा ऊष्मा स्थानांतरण को और सुगम बनाया जा सकता है।[2] क्यूएफएन संवेष्‍टन चतुर्थ-समतल संवेष्‍टन (क्यूएफपी) और बॉल ग्रिड सरणी (बीजीए) के समान है।

समतल नो-लीड अनुप्रस्थ काट

क्यूएफएन साइड व्यू।

यह आंकड़ा एक समतल नो-लीड संवेष्‍टन के अनुप्रस्थ काट को लीड फ्रेम और तार बंधन के साथ दिखाता है। निकाय डिज़ाइन दो प्रकार के होते हैं, छेदक सिंगुलेशन और सॉ सिंगुलेशन।[3] सॉ सिंगुलेशन संवेष्‍टन के एक बड़े समूह को भागों में काट देता है। छेदक सिंगुलेशन में, एकल संवेष्‍टन को आकार में ढाला जाता है। अनुप्रस्थ काट एक संलग्न ऊष्मीय शीर्ष पैड के साथ एक सॉ-सिंगुलेटेड निकाय दिखाता है। लीड फ्रेम तांबे मिश्र धातु से बना है और ऊष्मीय पैड को सिलिकॉन डाई को जोड़ने के लिए एक ऊष्मीय प्रवाहकीय आसंजक उपयोग किया जाता है। सिलिकॉन डाई एक इंच व्यास वाले तार बंधन के 1–2 हजारवें भाग से विद्युत रूप से लीड फ्रेम से जुड़ा होता है।

सॉ-सिंगुलेटेड संवेष्‍टन के पैड या तो पूर्ण रूप से एकीकृत परिपथ संवेष्‍टन प्रकारों की सूची के अंतर्गत हो सकते हैं, या वे संवेष्‍टन के किनारे के चारों ओर वलय कर सकते हैं।

विभिन्न प्रकार

दो प्रकार के क्यूएफएन संवेष्‍टन सामान्य हैं: वायु गुहिका क्यूएफएन, संवेष्‍टन में डिज़ाइन किए गए वायु गुहिका के साथ, और प्लास्टिक-ढालित क्यूएफएन संवेष्‍टन में वायु के साथ कम से कम।

कम मूल्यवान प्लास्टिक-ढालित क्यूएफएन सामान्यतः ~2–3 GHz तक के अनुप्रयोगों तक सीमित होते हैं। यह सामान्यतः मात्र 2 भागों, एक प्लास्टिक यौगिक और कॉपर लीड फ्रेम से बना होता है, और आच्छादन के साथ नहीं आता है।

इसके विपरीत, वायु गुहिका क्यूएफएन सामान्यतः तीन भागों से बना होता है; एक कॉपर लीडफ्रेम, प्लास्टिक-ढालित निकाय (विवृत, और सील नहीं), और या तो एक सिरेमिक या प्लास्टिक का आच्छादन। इसके निर्माण के कारण यह सामान्यतः अधिक मूल्यवान होता है, और इसका उपयोग 20–25 GHz तक के सूक्ष्म तरंग अनुप्रयोगों के लिए किया जा सकता है।

क्यूएफएन संकुल में संपर्कों की एक पंक्ति या संपर्कों की दोहरी पंक्ति हो सकती है।

लाभ

यह संवेष्‍टन विभिन्न प्रकार के लाभ प्रदान करता है जिसमें कम लीड प्रेरकत्व, चिप मापन फुटप्रिंट के निकट एक छोटा आकार, तनु रूपरेखा और कम भार सम्मिलित है। यह पीसीबी अनुरेख अनुमार्गण को सरल बनाने के लिए परिधि आई/ओ पैड का भी उपयोग करता है, और अनावृत कॉपर डाई-पैड तकनीक ठीक ऊष्मीय और विद्युत निष्पादन प्रदान करती है। ये विशेषताएं क्यूएफएन को कई नवीन अनुप्रयोगों के लिए एक आदर्श विकल्प बनाती हैं जहां आकार, भार, ऊष्मीय और विद्युत निष्पादन महत्वपूर्ण हैं।

डिजाइन, निर्माण, और विश्वसनीयता आक्षेप

ठीक संवेष्‍टन प्रौद्योगिकियां और घटक लघुकरण प्रायः नवीन या अप्रत्याशित डिजाइन, निर्माण और विश्वसनीयता के समस्याओं को जन्म दे सकते हैं। क्यूएफएन संवेष्‍टन की स्थिति में ऐसा ही रहा है, विशेषकर जब नवीन गैर-उपभोक्ता इलेक्ट्रॉनिक ओईएम द्वारा अभिग्रहण की बात आती है।

डिजाइन और निर्माण

कुछ प्रमुख क्यूएफएन डिजाइन विचार पैड और निकृत डिजाइन हैं। जब बन्धन पैड डिज़ाइन की बात आती है तो दो दृष्टिकोण अपनाए जा सकते हैं: टांका आच्छद परिभाषित (एसएमडी) या गैर-टांका आच्छद परिभाषित (एनवीनसएमडी)। एक एनवीनसएमडी दृष्टिकोण सामान्यतः अधिक विश्वसनीय संधि की ओर जाता है, क्योंकि टांका तांबे के पैड के ऊपर और किनारों दोनों के लिए बंधन में सक्षम होता है।[4] तांबे की निक्षारण प्रक्रिया में सामान्यतः टांका प्रच्छादन प्रक्रिया की तुलना में संक्षेप नियंत्रण होता है, जिसके परिणामस्वरूप अधिक सुसंगत जोड़ होते हैं।[5] इसमें संधि के ऊष्मीय और विद्युत निष्पादन को प्रभावित करने की क्षमता है, इसलिए इष्टतम निष्पादन पैरामीटर के लिए संवेष्‍टन निर्माता से परामर्श करना सहायक हो सकता है। एसएमडी पैड का उपयोग टांका सेतु की संभावना को कम करने के लिए किया जा सकता है, यद्यपि यह संधि की समग्र विश्वसनीयता को प्रभावित कर सकता है। क्यूएफएन डिजाइन प्रक्रिया में निकृत डिजाइन एक अन्य प्रमुख पैरामीटर है। उचित एपर्चर डिज़ाइन और निकृत की मोटाई उचित मोटाई के साथ अधिक सुसंगत संधि (अर्थात न्यूनतम शून्यकरण, गैस निष्क्रमण और अस्थिर क्षेत्र) का उत्पादन करने में सहायता कर सकती है, जिससे ठीक विश्वसनीयता प्राप्त होती है।[6]

विनिर्माण पक्ष पर भी समस्या हैं। बड़े क्यूएफएन घटकों के लिए, इलेक्ट्रॉनिक उपकरणों में एक लेप लगाकर टाँका लगाने के समय नमी का अवशोषण एक चिंता का विषय हो सकता है। यदि संवेष्‍टन में बड़ी मात्रा में नमी का अवशोषण होता है, तो पुनःप्रवाह के समय उष्ण होने से अत्यधिक घटक विंकुचता हो सकता है। यह प्रायः मुद्रित परिपथ बोर्ड से घटक के कोनों को उठाने के परिणामस्वरूप होता है, जिससे अनुचित संयुक्त गठन होता है। पुनःप्रवाह के समय विंकुचता के संकट को कम करने के लिए 3 या अधिक की नमी संवेदनशीलता स्तर की संस्तुत की जाती है।[7] क्यूएफएन निर्माण के साथ कई अन्य समस्याओं में सम्मिलित हैं: केंद्र ऊष्मीय पैड के अंतर्गत अत्यधिक टांका लेपी के कारण अस्थिर भाग, बड़े टांका उंडेलना, निकृष्ट पुन: कार्य करने योग्य विशेषताएं, और टांका पुनःप्रवाह परिच्छेदिका का अनुकूलन।[8]


विश्वसनीयता

घटक संवेष्‍टन प्रायः उपभोक्ता इलेक्ट्रानिकी बाजार द्वारा संचालित होती है, जिसमें स्वचालित और विमानन जैसे उच्च विश्वसनीयता वाले उद्योगों पर कम ध्यान दिया जाता है। इसलिए क्यूएफएन जैसे घटक संवेष्‍टन परिवारों को उच्च विश्वसनीयता वाले वातावरण में एकीकृत करना आक्षेपपूर्ण हो सकता है। क्यूएफएन घटकों को टांका श्रांति के समस्याओं के लिए अतिसंवेदनशील माना जाता है, विशेष रूप से तापमान चक्रण के कारण तापयांत्रिक श्रांति। लीडेड संवेष्‍टनों की तुलना में ऊष्मीय एक्सपेंशन (सीटीई) कुमेल के गुणांक के कारण क्यूएफएन संवेष्‍टनों में अत्यधिक कम गतिरोध उच्च तापयांत्रिक प्रभेद का कारण बन सकता है। उदाहरण के लिए, -40 डिग्री सेल्सियस से 125 डिग्री सेल्सियस के बीच त्वरित ऊष्मीय चक्रण स्थितियों के अंतर्गत, विभिन्न चतुर्थ समतल संवेष्‍टन (क्यूएफपी) घटक 10,000 से अधिक ऊष्मीय चक्रों तक चल सकते हैं जबकि क्यूएफएन घटक लगभग 1,000-3,000 चक्रों में विफल हो जाते हैं।[7]

ऐतिहासिक रूप से, विश्वसनीयता परीक्षण मुख्य रूप से जेईडीईसी द्वारा संचालित किया गया है,[9][10][11][12] यद्यपि इसने मुख्य रूप से डाई और प्रथम स्तर के अन्तर्संबद्ध पर ध्यान केंद्रित किया है। आईपीसी ( इलेक्ट्रानिकी) -9071ए[13] ने दूसरे स्तर के अन्तर्संबद्ध (अर्थात पीसीबी कार्यद्रव के लिए संवेष्‍टन) पर ध्यान केंद्रित करके इसे संबोधित करने का प्रयास किया। इस मानक के साथ आक्षेप यह है कि इसे घटक निर्माताओं की तुलना में ओईएम द्वारा अधिक अपनाया गया है, जो इसे एक अनुप्रयोग-विशिष्ट समस्या के रूप में देखते हैं। परिणामस्वरूप उनकी विश्वसनीयता और टांका श्रांति व्यवहार को चिह्नित करने के लिए विभिन्न क्यूएफएन संवेष्‍टन प्रकारों में बहुत अधिक प्रयोगात्मक परीक्षण और परिमित तत्व विधि रही है।[14][15][16][17][18][19][20]

सेरेब्रेनी एट अल.[21] ने ऊष्मीय चक्रण के अंतर्गत विश्वसनीयता क्यूएफएन टांका संधि का आकलन करने के लिए एक अर्ध-विश्लेषणात्मक मॉडल प्रस्तावित किया। यह मॉडल क्यूएफएन संवेष्‍टन के लिए प्रभावी यांत्रिक गुण उत्पन्न करता है, और चेन और नेल्सन द्वारा प्रस्तावित मॉडल का उपयोग करके अपरूपण प्रतिबल और विरूपण (यांत्रिकी) की गणना करता है।[22] क्षयित प्रतिबल ऊर्जा घनत्व तब इन मानों से निर्धारित किया जाता है और 2-पैरामीटर वायबुल वक्र का उपयोग करके विशेषता चक्रों की विफलता की भविष्यवाणी करने के लिए उपयोग किया जाता है।

अन्य संवेष्‍टनों की तुलना

क्यूएफएन संवेष्‍टन चतुर्थ समतल संवेष्‍टन के समान है, परन्तु लीड संवेष्‍टन पक्षों से बाहर नहीं निकलती हैं। इसलिए किसी क्यूएफएन संवेष्‍टन को हाथ से टांका करना, टांका संयुक्त की गुणवत्ता का निरीक्षण करना, या लीड की जांच करना जटिल है।

प्रकार

अलग-अलग निर्माता इस संवेष्‍टन के लिए अलग-अलग नामों का उपयोग करते हैं: एमएल (माइक्रो-लीडफ्रेम) बनाम एफएन (समतल नो-लीड), इसके अतिरिक्त चारों पक्षों (चतुर्थ) पर पैड के साथ संस्करण हैं और मात्र दो ओर (दोहरी) पर पैड हैं, मोटाई सामान्य संवेष्‍टन के लिए 0.9–1.0 मिमी और अत्यधिक तनु के लिए 0.4 मिमी के बीच भिन्न होती है। संक्षेप में सम्मिलित हैं:

संवेष्‍टन विनिर्माता
डीएफएन द्वितीय-समतल नो-लीड संवेष्‍टन एटमेल
डीक्यूएफएन द्वितीय-चतुर्थ समतल नो-लीड संवेष्‍टन एटमेल
सीडीएफएन आईसी हौस
टीडीएफएन तनु द्वितीय-समतल नो-लीड संवेष्‍टन
यूटीडीएफएन अति-तनु द्वितीय-समतल नो-लीड संवेष्‍टन
एक्सडीएफएन अत्यंत तनु द्वितीय-समतल नो-लीड संवेष्‍टन
क्यूएफएन चतुर्थ समतल नो-लीड संवेष्‍टन अमकोर तकनीक
क्यूएफएन-टीईपी शीर्ष- अनावृत पैड के साथ चतुर्थ समतल नो-लीड
टीक्यूएफएन तनु चतुर्थ समतल नो-लीड संवेष्‍टन
एलएलपी लीडरहित लीडफ्रेम संवेष्‍टन राष्ट्रीय अर्धचालक
एलपीसीसी लीडरहित प्लास्टिक चिप वाहक एएसएटी होल्डिंग्स
एमएलएफ माइक्रो लीड फ्रेम अमकोर तकनीक और एटमेल
एमएलपीडी माइक्रो लीड फ्रेम संवेष्‍टन द्वितीय
एमएलपीएम माइक्रो लीड फ्रेम संवेष्‍टन माइक्रो
एमएलपीक्यू माइक्रो लीड फ्रेम संवेष्‍टन चतुर्थ
डीआरएमएलएफ द्वितीय-पंक्ति माइक्रो लीड फ्रेम संवेष्‍टन अमकोर तकनीक
डीआरक्यूएफएन द्वितीय-पंक्ति चतुर्थ समतल नो-लीड माइक्रोचिप तकनीक
वीक्यूएफएन/डब्ल्यूक्यूएफएन अति तनु चतुर्थ समतल नो-लीड टेक्सस उपकरण और अन्य (जैसे कि एटमेल)
एचवीक्यूएफएन ऊष्माशोषी अति-तनु चतुर्थ समतल संवेष्‍टन
यूडीएफएन अति द्वितीय समतल नो-लीड माइक्रोचिप तकनीक
यूक्यूएफएन अतितनु चतुर्थ समतल नो-लीड टेक्सस उपकरण और माइक्रोचिप तकनीक
माइक्रो लीड फ्रेम संवेष्‍टन

माइक्रो लीड फ्रेम संवेष्‍टन (एमएलपी) इंटीग्रेटेड परिपथ क्यूएफएन संवेष्‍टन का एक परिवार है, जिसका उपयोग भूतल पर्वत तकनीक इलेक्ट्रानिक्स परिपथ डिजाइन में किया जाता है। यह 3 संस्करणों में उपलब्ध है जो एमएलपीक्यू (क्यू का अर्थ चतुर्थ है), एमएलपीएम (एम का अर्थ माइक्रो है), और एमएलपीडी (डी का अर्थ 'द्वितीय है)। ऊष्मीय निष्पादन को ठीक बनाने के लिए इन संवेष्‍टनों में सामान्यतः एक विवृत डाई अटैच पैड होता है। यह संवेष्‍टन निर्माण में चिप मापन संवेष्‍टन (सीएसपी) के समान है। एमएलपीडी को छोटे-रूपरेखा एकीकृत परिपथ (एसओआईसी) संवेष्‍टनों के लिए पदचिह्न-संगत प्रतिस्थापन प्रदान करने के लिए डिज़ाइन किया गया है।

माइक्रो लीड फ्रेम (एमएलएफ) कॉपर लीडफ्रेम कार्यद्रव के साथ चिप मापन संवेष्‍टन प्लास्टिक संपुटित संवेष्‍टन के निकट है। यह संवेष्‍टन मुद्रित परिपथ बोर्ड को विद्युत संपर्क प्रदान करने के लिए संवेष्‍टन के तल पर परिधि भूमि का उपयोग करता है। डाई अटैच पैडल को संवेष्‍टन की सतह के नीचे उजागर किया जाता है ताकि परिपथ बोर्ड को सीधे टांका करने पर एक कुशल ताप पथ प्रदान किया जा सके। यह डाउन बन्धन के उपयोग या प्रवाहकीय डाई अटैच सामग्री के माध्यम से विद्युत संपर्क द्वारा स्थिर जमीन को भी सक्षम बनाता है।

एक और वर्तमान डिज़ाइन भिन्नता जो उच्च घनत्व संपर्क की अनुमति देती है वह है 'दोहरी पंक्ति माइक्रो लीड फ़्रेम' (डीआरएमएलएफ) संवेष्‍टन। यह एक एमएलएफ संवेष्‍टन है जिसमें 164 आई/ओ तक की आवश्यकता वाले उपकरणों के लिए भूमि की दो पंक्तियाँ हैं। विशिष्ट अनुप्रयोगों में हार्ड डिस्क ड्राइव, यूएसबी नियंत्रक और वायरलेस लैन सम्मिलित हैं।

यह भी देखें

  • चिप वाहक चिप संवेष्‍टन और संवेष्‍टन प्रकार सूची
  • चतुर्थ समतल संवेष्‍टन

संदर्भ

  1. Design requirements for outlines of solid state and related products, JEDEC PUBLICATION 95, DESIGN GUIDE 4.23
  2. Bonnie C. Baker, Smaller Packages = Bigger Thermal Challenges, Microchip Technology Inc.
  3. "संग्रहीत प्रति" (PDF). Archived from the original (PDF) on 2006-08-28. Retrieved 2008-09-26.
  4. http://www.dfrsolutions.com/hubfs/Resources/services/Manufacturing-and-Reliability-Challenges-With-QFN.pdf?t=1503583170559[bare URL PDF]
  5. https://www.microsemi.com/document-portal/doc_view/130006-qfn-an[bare URL PDF]
  6. http://www.dfrsolutions.com/hubfs/Resources/services/Understanding-Criticality-of-Stencil-Aperture-Design-and-Implementation-QFN-Package.pdf[bare URL PDF]
  7. 7.0 7.1 http://www.dfrsolutions.com/hubfs/Resources/services/The-Reliability-Challenges-of-QFN-Packaging.pdf?t=1502980151115[bare URL PDF]
  8. http://www.aimsolder.com/sites/default/files/overcoming_the_challenges_of_the_qfn_package_rev_2013.pdf, Seelig, K., and Pigeon, K. "Overcoming the Challenges of the QFN Package," Proceedings of SMTAI, October, 2011.
  9. JEDEC JESD22-A104D, May 2005, Tempurature Cycling
  10. JEDEC JESD22-A105C, January 2011, Power and Tempurature Cycling
  11. JEDEC JESD22-A106B, June 2004, Thermal Shock
  12. JEDEC JESD22B113, March 2006, Board Level Cycling Bend Test Method for Interconnect Reliability Characterization of Components for Handheld Electronic Products
  13. IPC IPC-9701A, February 2006, Performance Test Methods and Qualification Requirements for Surface Mount Solder Attachments
  14. Syed, A. and Kang, W. "Board level assembly and reliability considerations for QFN type packages." SMTA International Conference, 2003
  15. Yan Tee, T., et al. "Comprehensive board-level solder joint reliability modeling and testing of QFN and PowerQFN packages." Microelectronics Reliability 43 (2003): 1329–1338.
  16. Vianco, P. and Neilsen, M. K. "Thermal mechanical fatigue of a 56 I/O plastic quad-flat nolead (PQFN) package." SMTA International Conference, 2015.
  17. Wilde, J., and Zukowski, E. "Comparative Analysis for μBGA and QFN Reliability." 8th. Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, 2007 IEEE, 2007.
  18. De Vries, J., et al. "Solder-joint reliability of HVQFN-packages subjected to thermal cycling." Microelectronics Reliability 49 (2009): 331-339.
  19. 17. Li, L. et al. "Board level reliability and assembly process of advanced QFN packages." SMTA International Conference, 2012.
  20. Birzer, C., et al. "Reliability Investigations of Leadless QFN Packages until End-of-Life with Application-Specific Board-Level Stress Tests." Electronics Components and Technology Conference, 2006.
  21. Serebreni, M., Blattau, N., Sharon, G., Hillman, C., Mccluskey, P. "Semi-analytical fatigue life model for reliability assessment of solder joints in qfn packages under thermal cycling". SMTA ICSR, 2017. Toronto, ON.
  22. Chen, W. T., and C. W. Nelson. "Thermal stress in bonded joints." IBM Journal of Research and Development 23.2 (1979): 179-188.


बाहरी संबंध