हैडोर्न तापमान: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (4 revisions imported from alpha:हैडोर्न_तापमान) |
(No difference)
|
Revision as of 11:07, 13 June 2023
हैडोर्न तापमान TH, सैद्धांतिक भौतिकी में तापमान है जहां हैड्रोनिक पदार्थ (अर्थात सामान्य पदार्थ) अब स्थिर न होने के कारण इसका "वाष्पीकरण" करना चाहिए या क्वार्क पदार्थ में परिवर्तित करना चाहिए क्योंकि इसे हैड्रोनिक पदार्थ का "क्वथनांक" माना जा सकता है। इसकी खोज रॉल्फ हेगडोर्न ने की थी। हैडोर्न तापमान उपस्थित है क्योंकि उपलब्ध ऊर्जा की मात्रा पर्याप्त अधिक है जो पदार्थ कण (क्वार्क-एंटीक्वार्क) युग्मों को स्वतः निर्वात से अनायास खींचा जा सकता है। इस प्रकार, सहज रूप से माना जाता है कि हैडोर्न तापमान पर एक प्रणाली उतनी ही ऊर्जा को समायोजित कर सकती है जितनी समाविश्ट जा सकती है, क्योंकि गठित क्वार्क नई स्वातंत्र्य कोटि प्रदान करते हैं और इस प्रकार हैडोर्न तापमान निरपेक्ष अगम्य पूर्ण गर्म होगा। यद्यपि, यदि इस चरण को क्वार्क के रूप में देखा जाए, तो यह स्पष्ट हो जाता है कि पदार्थ क्वार्क पदार्थ में रूपांतरित हो गया है, जिसे अधिक ऊष्मित किया जा सकता है।
हैडोर्न तापमान TH, लगभग 150 MeV/kB या लगभग 1.7×1012 K,[1] सबसे हल्के हैड्रोन पिओन के द्रव्यमान-ऊर्जा से थोड़ा ऊपर है।[2] हैडोर्न तापमान या उससे ऊपर के पदार्थ नए कणों के अग्नि उल्का उगलेंगे, जो पुनः नए अग्नि उल्का उत्पन्न कर सकते हैं, और तत्पश्चात् कण संसूचकों द्वारा निष्काषित कणों का संसूचन किया जा सकता है। सीईआरएन (फ्रांस और स्विटज़रलैंड) सुपर प्रोटॉन सिंक्रोट्रॉन और लार्ज हैड्रान कोलाइडर में ब्रुकहैवन राष्ट्रीय प्रयोगशाला (यूएसए) आरएचआईसी में भारी-आयन कोलाइडर में इस क्वार्क पदार्थ का संसूचन किया गया है।[citation needed][citation needed].
स्ट्रिंग सिद्धांत में, हैड्रोन के अलावा स्ट्रिंग के लिए पृथक हैडोर्न तापमान परिभाषित किया जा सकता है। यह तापमान अत्यंत उच्च (1030 K) है और इस प्रकार मुख्य रूप से सैद्धांतिक रुचि के लिए है।[3]
इतिहास
सीईआरएन में कार्यचालन के समय 1960 के दशक में जर्मन भौतिक विज्ञानी रॉल्फ हैडोर्न द्वारा हैडोर्न तापमान की खोज की गई थी। हैड्रॉन उत्पादन के सांख्यिकीय बूटस्ट्रैप मॉडल पर उनके कार्य ने दर्शाया कि क्योंकि एक प्रणाली में ऊर्जा में वृद्धि से नए कणों का उत्पादन होगा, संघट्टन ऊर्जा में वृद्धि से तापमान के अलावा प्रणाली की एन्ट्रापी में वृद्धि होगी, और "एक सीमित मान पर तापमान रूद्ध हो जाएगा"।[4][5]
तकनीकी व्याख्या
हैडोर्न तापमान तापमान TH है जिसके ऊपर स्थितियों के घनत्व में घातीय वृद्धि के साथ एक प्रणाली में विभाजन योग विचलन करता है।[4][6]
विचलन के कारण लोग गलत निष्कर्ष पर आ सकते हैं कि हैडोर्न तापमान से ऊपर के तापमान का होना असंभव है जो इसे पूर्ण गर्म तापमान बना देगा क्योंकि इसके लिए अनंत मात्रा में ऊर्जा की आवश्यकता होगी। समीकरणों में:
तर्क की यह रेखा हैडोर्न के लिए भी असत्य मानी जाती थी। हाइड्रोजन-एंटीहाइड्रोजन युग्मों के निर्माण के लिए विभाजन फलन अत्यधिक शीघ्रता से विचलन करता है, क्योंकि यह आयनीकरण ऊर्जा पर संचित ऊर्जा स्तरों से सीमित योगदान प्राप्त करता है। विचलन का कारण बनने वाले स्थितियां स्थानिक रूप से विशाल हैं, क्योंकि इलेक्ट्रॉन प्रोटॉन से अधिक दूर होते हैं। विचलन इंगित करता है कि न्यून तापमान पर हाइड्रोजन-एंटीहाइड्रोजन का उत्पादन नहीं होगा, यद्यपि प्रोटॉन/एंटीप्रोटोन और इलेक्ट्रॉन/एंटीइलेक्ट्रॉन का उत्पादन होगा। ऊर्जा ई और परिमित आकार के साथ घातीय रूप से कई प्रजातियों के भौतिकतः अवास्तविक स्थिति में हैडोर्न तापमान केवल एक अधिकतम तापमान है।
संघनित पदार्थ भौतिकी के संदर्भ में मूल रूप से स्थितियों की संख्या में घातीय वृद्धि की अवधारणा प्रस्तावित की गई थी। इसे 1970 के दशक के प्रारंभ में स्टीवन फ्रौत्ची और हैडोर्न द्वारा उच्च-ऊर्जा भौतिकी में समाविष्ट किया गया था। हैड्रॉनिक भौतिकी में, हैडोर्न तापमान विसंबंधन तापमान है।
स्ट्रिंग सिद्धांत में
स्ट्रिंग सिद्धांत में, यह एक प्रावस्था संक्रमण को इंगित करता है: वह संक्रमण जिसमें अधिक लंबे तार प्रचुरतापूर्वक उत्पन्न होते हैं। इसे स्ट्रिंग तनाव के आकार द्वारा नियंत्रित किया जाता है, जो युग्मन स्थिरांक की कुछ शक्ति द्वारा प्लैंक स्केल से छोटा होता है। प्लैंक स्केल की तुलना में तनाव को छोटा करने के लिए समायोजित करके, हैडोर्न संक्रमण प्लैंक तापमान से अधिक कम हो सकता है। पारंपरिक ग्रैंड यूनिफाइड स्ट्रिंग मॉडल इसे 10³⁰ केल्विन के परिमाण में प्लैंक तापमान से छोटे परिमाण के दो क्रमों में रखते हैं। इस तरह के तापमान किसी भी प्रयोग में सफल नहीं हैं और वर्तमान या निकट भविष्य की तकनीक की पहुंच से बहुत दूर हैं।
यह भी देखें
संदर्भ
- ↑ Gaździcki, Marek; Gorenstein, Mark I. (2016), Rafelski, Johann (ed.), "Hagedorn's Hadron Mass Spectrum and the Onset of Deconfinement", Melting Hadrons, Boiling Quarks – From Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN (in English), Springer International Publishing, pp. 87–92, Bibcode:2016mhbq.book...87G, doi:10.1007/978-3-319-17545-4_11, ISBN 978-3-319-17544-7
- ↑ Cartlidge, Edwin (23 June 2011). "क्वार्क दो खरब डिग्री पर मुक्त हो जाते हैं". Physics World. Retrieved 27 January 2014.
- ↑ Atick, Joseph J.; Witten, Edward (1988). "हैडोर्न संक्रमण और स्ट्रिंग थ्योरी की स्वतंत्रता की डिग्री की संख्या". Nuclear Physics B. 310 (2): 291. Bibcode:1988NuPhB.310..291A. doi:10.1016/0550-3213(88)90151-4.
- ↑ Jump up to: 4.0 4.1 Ericson, Torleif; Rafelski, Johann (4 September 2003). "हैडोर्न तापमान की कहानी". CERN Courier. Retrieved 2016-12-09.
- ↑ Rafelski, Johann, ed. (2016). Melting Hadrons, Boiling Quarks – From Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN (in English). Cham: Springer International Publishing. Bibcode:2016mhbq.book.....R. doi:10.1007/978-3-319-17545-4. ISBN 978-3-319-17544-7.
- ↑ Tyson, Peter (December 2007). "Absolute Hot: Is There an Opposite to Absolute Zero?". NOVA. Retrieved 2008-12-21.