संक्रमण की स्थिति: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 50: Line 50:




'''को स्थिर करके एंजाइम कटैलिसीस आगे बढ़ने का एक विधि है। संक्रमण अवस्था की ऊर्जा को कम करके यह प्रारंभिक सामग्री की अधिक जनसंख्या को संक्रमण ऊर्जा पर नियंत्रण पाने और उत्पाद के लिए आगे बढ़ने के लिनियंत्रण पाने और उत्पाद के लिए आगे बढ़ने के लि ए'''  
'''को स्थिर करके एंजाइम कटैलिसीस आगे बढ़ने के लिनियंत्रण पाने और उत्पाद के लिए आगे बढ़ने के लि ए'''  


== यह भी देखें                                                                                                    ==
== यह भी देखें                                                                                                    ==
* संक्रमण स्थिति सिद्धांत
* संक्रमण स्थिति सिद्धांत
* [[संक्रमण राज्य एनालॉग|संक्रमण स्थिति एनालॉग]], रासायनिक यौगिक सब्सट्रेट की ट्रांज़िशन स्टेट की नकल करते हैं और एंजाइम इनहिबिटर के रूप में कार्य करते हैं
* [[संक्रमण राज्य एनालॉग|संक्रमण स्थिति एनालॉग]], रासायनिक यौगिक सब्सट्रेट की ट्रांज़िशन स्थिति की प्रतिलिपि करते हैं और एंजाइम इनहिबिटर के रूप में कार्य करते हैं
* [[प्रतिक्रिया मध्यवर्ती]]
* [[प्रतिक्रिया मध्यवर्ती]]
* प्रतिक्रियाशील मध्यवर्ती
* प्रतिक्रियाशील मध्यवर्ती

Revision as of 20:04, 12 June 2023

रसायन विज्ञान में रासायनिक प्रतिक्रिया की संक्रमण स्थिति प्रतिक्रिया समन्वय के साथ एक विशेष विन्यास है। इसे इस प्रतिक्रिया समन्वय के साथ उच्चतम रासायनिक ऊर्जा के अनुरूप स्थिति के रूप में परिभाषित किया गया है।[1] इसे अधिकांशतः डबल डैगर ‡ प्रतीक के साथ चिह्नित किया जाता है।

उदाहरण के तौर पर, नीचे दिखाया गया संक्रमण स्थिति SN2 प्रतिक्रिया के समय ब्रोमोथेन की हाइड्रॉक्साइड आयनों के साथ होता है:

Transition State.png

उपरोक्त प्रतिक्रिया की संक्रमण स्थिति के लिए घनत्व कार्यात्मक सिद्धांत-निर्धारित ज्यामिति।[2] दूरियां angstroms में सूचीबद्ध हैं। दीर्घीकृत C-Br और C-O बंधों, और त्रिकोणीय द्विपिरामाइडल आण्विक ज्यामिति पर ध्यान दें।

एक प्रतिक्रिया का सक्रिय परिसर या तो संक्रमण स्थिति या अन्य स्थिति को अभिकारक और उत्पाद (रसायन विज्ञान) के बीच प्रतिक्रिया समन्वय के साथ संदर्भित कर सकता है विशेष रूप से जो संक्रमण स्थिति के समीप हैं।[3]

संक्रमण अवस्था सिद्धांत के अनुसार एक बार जब अभिकारक संक्रमण अवस्था विन्यास से गुजर जाते हैं, तो वे सदैव उत्पाद बनाते रहते हैं।[3]


अवधारणा का इतिहास

रासायनिक अभिक्रियाओं के होने की दर के कई सिद्धांतों में एक संक्रमण अवस्था की अवधारणा महत्वपूर्ण रही है। यह संक्रमण स्थिति सिद्धांत (जिसे सक्रिय जटिल सिद्धांत भी कहा जाता है) के साथ प्रारंभ हुआ, जिसे पहली बार 1935 के आसपास हेनरी आइरिंग (रसायनज्ञ), मेरेडिथ ग्वेने इवांस और माइकल पोलानी द्वारा विकसित किया गया था, और रासायनिक कैनेटीक्स में मूलभूत अवधारणाओं को प्रस्तुत किया जो आज भी उपयोग किए जाते हैं। .

स्पष्टीकरण

प्रतिक्रियाशील अणुओं के बीच टक्कर के परिणामस्वरूप सफल रासायनिक प्रतिक्रिया हो भी सकती है और नहीं भी। परिणाम अणुओं की सापेक्ष गतिज ऊर्जा, सापेक्ष अभिविन्यास और आंतरिक ऊर्जा जैसे कारकों पर निर्भर करता है। यहां तक ​​कि यदि टकराव के साथी एक सक्रिय परिसर बनाते हैं तो वे आगे बढ़ने और बनने के लिए बाध्य नहीं होते हैं उत्पाद (रसायन विज्ञान), और इसके अतिरिक्त जटिल अभिकारक के लिए अलग हो सकता है।

संक्रमण अवस्थाओं का अवलोकन करना

क्योंकि संक्रमण अवस्था की संरचना एक संभावित ऊर्जा सतह के साथ एक प्रथम-क्रम का काठी बिंदु है एक प्रतिक्रिया में प्रजातियों की जनसंख्या जो संक्रमण अवस्था में है, नगण्य है। चूंकि संभावित ऊर्जा सतह के साथ एक काठी बिंदु पर होने का अर्थ है कि अणु के बंधन के साथ एक बल काम कर रहा है, वहां सदैव एक कम ऊर्जा संरचना होगी जो संक्रमण स्थिति में विघटित हो सकती है। यह कभी-कभी यह कहते हुए व्यक्त किया जाता है कि संक्रमण स्थिति का एक क्षणभंगुर अस्तित्व है, प्रजातियों के साथ केवल रासायनिक बंधों (फेमटोसेकंड) के कंपन के समय-स्तर के लिए संक्रमण स्थिति संरचना को बनाए रखना है। चूँकि चालाकी से हेरफेर की गई स्पेक्ट्रोस्कोपी विधि हमें उतने ही समीप ला सकती है, जितनी विधि की अनुमति देता है। फेमटोकेमिस्ट्री आईआर स्पेक्ट्रोस्कोपी उस कारण से विकसित की गई थी, और संक्रमण बिंदु के अधिक समीप आणविक संरचना की जांच करना संभव है। अधिकांशतः प्रतिक्रिया समन्वय के साथ प्रतिक्रियाशील मध्यवर्ती एक संक्रमण अवस्था से ऊर्जा में बहुत कम उपस्थित नहीं होते हैं जिससे दोनों के बीच अंतर करना कठिन हो जाता है।

एक संक्रमण स्थिति की ज्यामिति का निर्धारण

रुचि की रासायनिक प्रजातियों की संभावित ऊर्जा सतह (पीईएस) पर प्रथम-क्रम के काठी बिंदुओं की खोज करके संक्रमण स्थिति संरचनाओं का निर्धारण किया जा सकता है।[4] एक प्रथम-क्रम का काठी बिंदु सूचकांक एक का एक महत्वपूर्ण बिंदु (गणित) है, अर्थात, एक को छोड़कर सभी दिशाओं में न्यूनतम के अनुरूप पीईएस पर एक स्थिति यह लेख ज्यामिति अनुकूलन में आगे वर्णित है।

हेमंड-लेफ़लर अभिधारणा

हैमंड-लेफ़लर अभिधारणा बताती है कि संक्रमण अवस्था की संरचना अधिक निकटता से या तो उत्पादों या प्रारंभिक सामग्री से मिलती जुलती है, जो इस बात पर निर्भर करता है कि तापीय धारिता किसमें अधिक है। एक संक्रमण अवस्था जो उत्पादों की तुलना में अधिक अभिकारकों के समान होती है, को प्रारंभिक कहा जाता है, जबकि एक संक्रमण अवस्था जो अभिकारकों की तुलना में उत्पादों के समान होती है, को देर से कहा जाता है। इस प्रकार, हैमोंड-लेफ़लर पोस्टुलेट एक एंडोथर्मिक प्रतिक्रिया के लिए एक देर से संक्रमण की स्थिति और एक एक्ज़ोथिर्मिक प्रतिक्रिया के लिए एक प्रारंभिक संक्रमण स्थिति की पूर्वानुमान करता है।

एक आयामहीन प्रतिक्रिया समन्वय जो एक संक्रमण स्थिति की विलंबता को मापता है एक विशेष प्रतिक्रिया के लिए हैमोंड-लेफ़लर अभिधारणा की वैधता का परीक्षण करने के लिए उपयोग किया जा सकता है।[5]


संरचना-सहसंबंध सिद्धांत

संरचना-सहसंबंध सिद्धांत बताता है कि "संरचनात्मक परिवर्तन जो प्रतिक्रिया समन्वय के साथ होते हैं प्रतिक्रिया समन्वय के साथ सामान्य मानो से बंधन दूरी और कोणों के विचलन के रूप में खुद को जमीनी स्थिति में प्रकट कर सकते हैं"।[6] इस सिद्धांत के अनुसार यदि एक विशेष बंधन की लंबाई संक्रमण अवस्था तक पहुँचने पर बढ़ जाती है तो यह बंधन इस संक्रमण अवस्था को साझा नहीं करने वाले यौगिक की तुलना में पहले से ही अपनी जमीनी अवस्था में अधिक लंबा होता है। इस सिद्धांत का एक प्रदर्शन नीचे दर्शाए गए दो चक्रीय यौगिकों में पाया जाता है।[7] बाईं ओर वाला एक बाइसिकल [2.2.2] ऑक्टीन है जो 200 °C पर, रेट्रो-डायल्स-एल्डर प्रतिक्रिया में ईथीलीन को बाहर निकालता है।

संरचना सहसंबंध सिद्धांत
दाईं ओर के यौगिक की तुलना में (जिसमें एक एल्केन समूह की कमी है यह प्रतिक्रिया देने में असमर्थ है) ब्रिजहेड कार्बन-कार्बन बॉन्ड की लंबाई कम होने की उम्मीद है यदि सिद्धांत धारण करता है क्योंकि संक्रमण की स्थिति के समीप आने पर यह बॉन्ड डबल बॉन्ड प्राप्त करता है। चरित्र इन दो यौगिकों के लिए एक्स - रे क्रिस्टलोग्राफी के आधार पर पूर्वानुमान की जाती है।

एंजाइमी कटैलिसीस के लिए निहितार्थ

इलेक्ट्रोस्टाटिक्स के माध्यम से संक्रमण अवस्था को स्थिर करके एंजाइम कटैलिसीस आगे बढ़ने का एक विधि है। संक्रमण अवस्था की ऊर्जा को कम करके यह प्रारंभिक सामग्री की अधिक जनसंख्या को संक्रमण ऊर्जा पर नियंत्रण पाने और उत्पाद के लिए आगे बढ़ने के लिए आवश्यक ऊर्जा प्राप्त करने की अनुमति देता है।


को स्थिर करके एंजाइम कटैलिसीस ए आगे बढ़ने के लिनियंत्रण पाने और उत्पाद के लिए आगे बढ़ने के लि ए

यह भी देखें

संदर्भ

  1. Solomons, T.W. Graham & Fryhle, Craig B. (2004). कार्बनिक रसायन विज्ञान (8th ed.). John Wiley & Sons, Inc. ISBN 0-471-41799-8.
  2. The calculation used a B3LYP functional and a 6-31+G* basis set.
  3. 3.0 3.1 Peter Atkins and Julio de Paula, Physical Chemistry (8th ed., W.H. Freeman 2006), p.809 ISBN 0-7167-8759-8
  4. Frank Jensen (1999). कम्प्यूटेशनल रसायन विज्ञान का परिचय. England: John Wiley and Sons Ltd.
  5. Thomas A. Manz; David S. Sholl (2009). "संक्रमण अवस्थाओं की विलंबता की मात्रा निर्धारित करने के लिए एक आयामहीन प्रतिक्रिया समन्वय". J. Comput. Chem.: NA. doi:10.1002/jcc.21440.
  6. Buergi, Hans Beat; Dunitz, Jack D. (1983). "क्रिस्टल स्टैटिक्स से लेकर रासायनिक गतिकी तक". Accounts of Chemical Research. 16 (5): 153. doi:10.1021/ar00089a002.
  7. Goh, Yit Wooi; Danczak, Stephen M.; Lim, Tang Kuan; White, Jonathan M. (2007). "Manifestations of the Alder−Rickert Reaction in the Structures of Bicyclo[2.2.2]octadiene and Bicyclo[2.2.2]octene Derivatives". The Journal of Organic Chemistry. 72 (8): 2929–35. doi:10.1021/jo0625610. PMID 17371072.