मापने योग्य स्थान: Difference between revisions

From Vigyanwiki
(Created page with "{{confused|Measure space}} गणित में, एक मापने योग्य स्थान या बोरेल स्थान<ref name="eommeasurablespace"...")
 
(ch)
Line 1: Line 1:
{{confused|Measure space}}
गणित में, मापने योग्य स्थान या बोरेल स्थान<ref name="eommeasurablespace" />[[माप सिद्धांत]] में एक मूल वस्तु है। इसमें [[सेट (गणित)|समुच्चय (गणित)]] और सिग्मा-बीजगणित σ-बीजगणित होता है, जो मापे जाने वाले [[सबसेट|उपसमुच्चय]] को परिभाषित करता है।
 
गणित में, एक मापने योग्य स्थान या बोरेल स्थान<ref name="eommeasurablespace" />[[माप सिद्धांत]] में एक मूल वस्तु है। इसमें एक [[सेट (गणित)]] और एक सिग्मा-बीजगणित|σ-बीजगणित होता है, जो मापे जाने वाले [[सबसेट]] को परिभाषित करता है।


== परिभाषा ==
== परिभाषा ==


एक सेट पर विचार करें <math>X</math> और एक सिग्मा-बीजगणित|σ-बीजगणित <math>\mathcal A</math> पर <math>X.</math> फिर टपल <math>(X, \mathcal A)</math> मापने योग्य स्थान कहा जाता है।<ref name="Klenke18" />
समुच्चय पर विचार करें <math>X</math> और सिग्मा-बीजगणित σ-बीजगणित <math>\mathcal A</math> पर <math>X.</math> फिर टपल <math>(X, \mathcal A)</math> मापने योग्य स्थान कहा जाता है।<ref name="Klenke18" />


ध्यान दें कि एक माप स्थान के विपरीत, मापने योग्य स्थान के लिए कोई माप (गणित) की आवश्यकता नहीं है।
ध्यान दें कि एक माप स्थान के विपरीत, मापने योग्य स्थान के लिए कोई माप (गणित) की आवश्यकता नहीं है।
Line 11: Line 9:
== उदाहरण ==
== उदाहरण ==


सेट पर नजर:
समुच्चय पर नजर:
<math display=block>X = \{1,2,3\}.</math>
<math display=block>X = \{1,2,3\}.</math>
एक संभव <math>\sigma</math>-बीजगणित होगा:
एक संभव <math>\sigma</math>-बीजगणित होगा:
Line 17: Line 15:
तब <math>\left(X, \mathcal A_1\right)</math> मापने योग्य स्थान है। एक और संभव <math>\sigma</math>-बीजगणित पर स्थापित शक्ति होगी <math>X</math>:
तब <math>\left(X, \mathcal A_1\right)</math> मापने योग्य स्थान है। एक और संभव <math>\sigma</math>-बीजगणित पर स्थापित शक्ति होगी <math>X</math>:
<math display=block>\mathcal A_2 = \mathcal P(X).</math>
<math display=block>\mathcal A_2 = \mathcal P(X).</math>
इसके साथ ही सेट पर दूसरा मापनीय स्थान <math>X</math> द्वारा दिया गया है  <math>\left(X, \mathcal A_2\right).</math>
इसके साथ ही समुच्चय पर दूसरा मापनीय स्थान <math>X</math> द्वारा दिया गया है  <math>\left(X, \mathcal A_2\right).</math>
 
 
== सामान्य मापने योग्य स्थान ==
== सामान्य मापने योग्य स्थान ==


अगर <math>X</math> परिमित या गणनीय रूप से अनंत है, <math>\sigma</math>-बीजगणित सबसे अधिक बार चालू की गई शक्ति है <math>X,</math> इसलिए <math>\mathcal A = \mathcal P(X).</math> यह मापने योग्य स्थान की ओर जाता है <math>(X, \mathcal P(X)).</math>
अगर <math>X</math> परिमित या गणनीय रूप से अनंत है, <math>\sigma</math>-बीजगणित सबसे अधिक बार चालू की गई शक्ति है <math>X,</math> इसलिए <math>\mathcal A = \mathcal P(X).</math> यह मापने योग्य स्थान की ओर जाता है <math>(X, \mathcal P(X)).</math>
अगर <math>X</math> एक [[टोपोलॉजिकल स्पेस]] है, द <math>\sigma</math>-बीजगणित आमतौर पर बोरेल सिग्मा बीजगणित है|बोरेल <math>\sigma</math>-बीजगणित <math>\mathcal B,</math> इसलिए <math>\mathcal A = \mathcal B(X).</math> यह मापने योग्य स्थान की ओर जाता है <math>(X, \mathcal B(X))</math> यह सभी टोपोलॉजिकल स्पेस जैसे कि वास्तविक संख्या के लिए सामान्य है <math>\R.</math>


अगर <math>X</math> [[टोपोलॉजिकल स्पेस]] है, द <math>\sigma</math>-बीजगणित सामान्यतः बोरेल सिग्मा बीजगणित है| बोरेल <math>\sigma</math>-बीजगणित <math>\mathcal B,</math> इसलिए <math>\mathcal A = \mathcal B(X).</math> यह मापने योग्य स्थान की ओर जाता है <math>(X, \mathcal B(X))</math> यह सभी टोपोलॉजिकल स्पेस जैसे कि वास्तविक संख्या के लिए सामान्य है <math>\R.</math>
== बोरेल रिक्त स्थान के साथ अस्पष्टता ==
== बोरेल रिक्त स्थान के साथ अस्पष्टता ==


बोरेल स्पेस शब्द का प्रयोग विभिन्न प्रकार के मापने योग्य स्थानों के लिए किया जाता है। यह संदर्भित कर सकता है
बोरेल स्पेस शब्द का प्रयोग विभिन्न प्रकार के मापने योग्य स्थानों के लिए किया जाता है। यह संदर्भित कर सकता है
* कोई भी मापने योग्य स्थान, इसलिए यह ऊपर परिभाषित अनुसार मापने योग्य स्थान का पर्याय है <ref name="eommeasurablespace" />* एक औसत दर्जे का स्थान जो [[बोरेल समरूपता]] है वास्तविक संख्याओं के एक औसत दर्जे का सबसेट (फिर से बोरेल के साथ) <math>\sigma</math>-बीजगणित)<ref name="Kallenberg15" />
* कोई भी मापने योग्य स्थान, इसलिए यह ऊपर परिभाषित अनुसार मापने योग्य स्थान का पर्याय है <ref name="eommeasurablespace" />* एक औसत दर्जे का स्थान जो [[बोरेल समरूपता]] है वास्तविक संख्याओं के एक औसत दर्जे का उपसमुच्चय (फिर से बोरेल के साथ) <math>\sigma</math>-बीजगणित)<ref name="Kallenberg15" />
 
{{Families of sets}}


== यह भी देखें ==
== यह भी देखें ==


* {{annotated link|Borel set}}
* {{annotated link|बोरेल समुच्चय}}
* {{annotated link|Measurable set}}
* {{annotated link|मापनीय सेट}}
* {{annotated link|Standard Borel space}}
* {{annotated link|मानक बोरेल स्थान/मानक बोरेल स्थान}}


==संदर्भ==
==संदर्भ==

Revision as of 22:24, 10 June 2023

गणित में, मापने योग्य स्थान या बोरेल स्थान[1]माप सिद्धांत में एक मूल वस्तु है। इसमें समुच्चय (गणित) और सिग्मा-बीजगणित σ-बीजगणित होता है, जो मापे जाने वाले उपसमुच्चय को परिभाषित करता है।

परिभाषा

समुच्चय पर विचार करें और सिग्मा-बीजगणित σ-बीजगणित पर फिर टपल मापने योग्य स्थान कहा जाता है।[2]

ध्यान दें कि एक माप स्थान के विपरीत, मापने योग्य स्थान के लिए कोई माप (गणित) की आवश्यकता नहीं है।

उदाहरण

समुच्चय पर नजर:

एक संभव -बीजगणित होगा:
तब मापने योग्य स्थान है। एक और संभव -बीजगणित पर स्थापित शक्ति होगी :
इसके साथ ही समुच्चय पर दूसरा मापनीय स्थान द्वारा दिया गया है

सामान्य मापने योग्य स्थान

अगर परिमित या गणनीय रूप से अनंत है, -बीजगणित सबसे अधिक बार चालू की गई शक्ति है इसलिए यह मापने योग्य स्थान की ओर जाता है

अगर टोपोलॉजिकल स्पेस है, द -बीजगणित सामान्यतः बोरेल सिग्मा बीजगणित है| बोरेल -बीजगणित इसलिए यह मापने योग्य स्थान की ओर जाता है यह सभी टोपोलॉजिकल स्पेस जैसे कि वास्तविक संख्या के लिए सामान्य है

बोरेल रिक्त स्थान के साथ अस्पष्टता

बोरेल स्पेस शब्द का प्रयोग विभिन्न प्रकार के मापने योग्य स्थानों के लिए किया जाता है। यह संदर्भित कर सकता है

  • कोई भी मापने योग्य स्थान, इसलिए यह ऊपर परिभाषित अनुसार मापने योग्य स्थान का पर्याय है [1]* एक औसत दर्जे का स्थान जो बोरेल समरूपता है वास्तविक संख्याओं के एक औसत दर्जे का उपसमुच्चय (फिर से बोरेल के साथ) -बीजगणित)[3]

यह भी देखें

संदर्भ

  1. 1.0 1.1 Sazonov, V.V. (2001) [1994], "Measurable space", Encyclopedia of Mathematics, EMS Press
  2. Klenke, Achim (2008). Probability Theory. Berlin: Springer. p. 18. doi:10.1007/978-1-84800-048-3. ISBN 978-1-84800-047-6.
  3. Kallenberg, Olav (2017). Random Measures, Theory and Applications. Probability Theory and Stochastic Modelling. Vol. 77. Switzerland: Springer. p. 15. doi:10.1007/978-3-319-41598-7. ISBN 978-3-319-41596-3.