सुपरलैटिस: Difference between revisions

From Vigyanwiki
(Created page with "{{Use American English|date=January 2019}} {{Use dmy dates|date=January 2019}} {{Short description|Periodic structure of layers of two or more materials}} एक सुपर...")
 
No edit summary
Line 1: Line 1:
{{Use American English|date=January 2019}}
 
{{Use dmy dates|date=January 2019}}
{{Short description|Periodic structure of layers of two or more materials}}
{{Short description|Periodic structure of layers of two or more materials}}
एक सुपरलैटिस दो (या अधिक) सामग्रियों की परतों की आवधिक संरचना है। आमतौर पर, एक परत की मोटाई कई [[नैनोमीटर]] होती है। यह निम्न-आयामी संरचना को भी संदर्भित कर सकता है जैसे [[क्वांटम डॉट]]्स या क्वांटम कुओं की एक सरणी।
एक अति जालक दो (या अधिक) पदार्थों की परतों की आवधिक संरचना है। सामान्यतः, एक परत की मोटाई कई [[नैनोमीटर]] होती है। यह निम्न-आयामी संरचना को भी संदर्भित कर सकता है जैसे [[क्वांटम डॉट|क्वांटम बिन्दु]] या क्वांटम कूप की एक सरणी।


== डिस्कवरी ==
== खोज ==


1925 की शुरुआत में जोहानसन और लिंडे द्वारा सुपरलैटिस की खोज की गई थी<ref>{{cite journal|last1=Johansson|last2=Linde|title=मिश्रित-क्रिस्टल श्रृंखला गोल्ड-कॉपर और पैलेडियम-कॉपर में परमाणु व्यवस्था का एक्स-रे निर्धारण|journal=Annalen der Physik|date=1925|volume=78|issue=21|page=439|doi=10.1002/andp.19253832104|bibcode=1925AnP...383..439J}}</ref> [[ सोना ]]-[[ ताँबा ]] और [[ दुर्ग ]]-कॉपर सिस्टम पर उनके विशेष एक्स-रे विवर्तन पैटर्न के माध्यम से अध्ययन के बाद। क्षेत्र पर आगे के प्रायोगिक अवलोकन और सैद्धांतिक संशोधन ब्रैडली और जे द्वारा किए गए,<ref>{{cite journal|last1=Bradley|last2=Jay|title=लोहा और एल्युमीनियम मिश्र धातुओं में सुपरलैटिस का निर्माण|journal=Proc. R. Soc. A|date=1932|volume=136|issue=829|pages=210–232|doi=10.1098/rspa.1932.0075|bibcode=1932RSPSA.136..210B|doi-access=free}}</ref> गोर्स्की,<ref>{{cite journal|last1=Gorsky|title=CuAu मिश्र धातु में परिवर्तन की एक्स-रे जांच|journal=Z. Phys.|date=1928|volume=50|issue=1–2|pages=64–81|bibcode = 1928ZPhy...50...64G |doi = 10.1007/BF01328593 |s2cid=121876817}}</ref> बोरेलियस,<ref>{{cite journal|last1=Borelius|title=धात्विक मिश्रित चरणों के परिवर्तन का सिद्धांत|journal=Annalen der Physik|date=1934|volume=20|issue=1|page=57|doi=10.1002/andp.19344120105|bibcode=1934AnP...412...57B}}</ref> देहलिंगर और ग्राफ,<ref>{{cite journal|last1=Dehlinger|last2=Graf|title=ठोस धातु चरणों का परिवर्तन I. चतुष्कोणीय सोना-तांबा मिश्र धातु CuAu|journal=Z. Phys. Chem.|date=1934|volume=26|page=343| doi=10.1515/zpch-1934-2631 | s2cid=99550940 }}</ref> ब्रैग और विलियम्स<ref>{{cite journal|last1=Bragg|first1=W.L.|last2=Williams|first2=E.J.|title=मिश्र धातु I में परमाणु व्यवस्था पर थर्मल आंदोलन का प्रभाव|journal=Proc. R. Soc. A|date=1934|volume=145|issue=855|pages=699–730|doi=10.1098/rspa.1934.0132|bibcode=1934RSPSA.145..699B|doi-access=free}}</ref> और बेथे।<ref>{{cite journal|last1=Bethe|title=सुपरलैटिस का सांख्यिकीय सिद्धांत|journal=Proc. R. Soc. A|date=1935|volume=150|issue=871|pages=552–575|doi=10.1098/rspa.1935.0122|bibcode=1935RSPSA.150..552B|doi-access=free}}</ref> सिद्धांत अव्यवस्थित अवस्था से एक आदेशित अवस्था में क्रिस्टल लैटिस में परमाणुओं की व्यवस्था के संक्रमण पर आधारित थे।
[[ सोना |सोना]] -[[ ताँबा | ताँबा]] और [[ दुर्ग |पैलेडियम]]-तांबा प्रणालियों पर उनके विशेष एक्स-किरणें विवर्तन प्रतिरूप के अध्ययन के बाद जोहानसन और लिंडे द्वारा 1925 के प्रारम्भ में अति जालक की खोज की गई थी।<ref>{{cite journal|last1=Johansson|last2=Linde|title=मिश्रित-क्रिस्टल श्रृंखला गोल्ड-कॉपर और पैलेडियम-कॉपर में परमाणु व्यवस्था का एक्स-रे निर्धारण|journal=Annalen der Physik|date=1925|volume=78|issue=21|page=439|doi=10.1002/andp.19253832104|bibcode=1925AnP...383..439J}}</ref> क्षेत्र पर आगे के प्रायोगिक अवलोकन और सैद्धांतिक संशोधन ब्रैडली और जे<ref>{{cite journal|last1=Bradley|last2=Jay|title=लोहा और एल्युमीनियम मिश्र धातुओं में सुपरलैटिस का निर्माण|journal=Proc. R. Soc. A|date=1932|volume=136|issue=829|pages=210–232|doi=10.1098/rspa.1932.0075|bibcode=1932RSPSA.136..210B|doi-access=free}}</ref> गोर्स्की,<ref>{{cite journal|last1=Gorsky|title=CuAu मिश्र धातु में परिवर्तन की एक्स-रे जांच|journal=Z. Phys.|date=1928|volume=50|issue=1–2|pages=64–81|bibcode = 1928ZPhy...50...64G |doi = 10.1007/BF01328593 |s2cid=121876817}}</ref> बोरेलियस,<ref>{{cite journal|last1=Borelius|title=धात्विक मिश्रित चरणों के परिवर्तन का सिद्धांत|journal=Annalen der Physik|date=1934|volume=20|issue=1|page=57|doi=10.1002/andp.19344120105|bibcode=1934AnP...412...57B}}</ref> देहलिंगर और ग्राफ,<ref>{{cite journal|last1=Dehlinger|last2=Graf|title=ठोस धातु चरणों का परिवर्तन I. चतुष्कोणीय सोना-तांबा मिश्र धातु CuAu|journal=Z. Phys. Chem.|date=1934|volume=26|page=343| doi=10.1515/zpch-1934-2631 | s2cid=99550940 }}</ref> ब्रैग और विलियम्स<ref>{{cite journal|last1=Bragg|first1=W.L.|last2=Williams|first2=E.J.|title=मिश्र धातु I में परमाणु व्यवस्था पर थर्मल आंदोलन का प्रभाव|journal=Proc. R. Soc. A|date=1934|volume=145|issue=855|pages=699–730|doi=10.1098/rspa.1934.0132|bibcode=1934RSPSA.145..699B|doi-access=free}}</ref> और बेथे द्वारा किए गए थे।<ref>{{cite journal|last1=Bethe|title=सुपरलैटिस का सांख्यिकीय सिद्धांत|journal=Proc. R. Soc. A|date=1935|volume=150|issue=871|pages=552–575|doi=10.1098/rspa.1935.0122|bibcode=1935RSPSA.150..552B|doi-access=free}}</ref> सिद्धांत अव्यवस्थित अवस्था से एक क्रमित अवस्था में क्रिस्टल जालक में परमाणुओं की व्यवस्था के संक्रमण पर आधारित थे।


== यांत्रिक गुण ==
== यांत्रिक गुण ==


जे.एस. कोहलर ने सैद्धांतिक रूप से भविष्यवाणी की थी<ref>{{Cite journal | last1 = Koehler | first1 = J. | title = एक मजबूत ठोस डिजाइन करने का प्रयास| doi = 10.1103/PhysRevB.2.547 | journal = Physical Review B | volume = 2 | issue = 2 | pages = 547–551 | year = 1970 |bibcode = 1970PhRvB...2..547K }}</ref> कि उच्च और निम्न लोचदार स्थिरांक वाली सामग्रियों की वैकल्पिक (नैनो-) परतों का उपयोग करके, कतरनी प्रतिरोध को 100 गुना तक सुधारा जाता है क्योंकि फ्रैंक-रीड सोर्स|फ्रैंक-रीड [[ अव्यवस्था ]] का स्रोत नैनोलेयर्स में काम नहीं कर सकता है।
जे.एस. कोहलर ने सैद्धांतिक रूप से भविष्यवाणी की थी<ref>{{Cite journal | last1 = Koehler | first1 = J. | title = एक मजबूत ठोस डिजाइन करने का प्रयास| doi = 10.1103/PhysRevB.2.547 | journal = Physical Review B | volume = 2 | issue = 2 | pages = 547–551 | year = 1970 |bibcode = 1970PhRvB...2..547K }}</ref> कि उच्च और निम्न प्रत्यास्थ स्थिरांक वाले पदार्थों की वैकल्पिक (नैनो-) परतों का उपयोग करके, अपरूपक प्रतिरोध को 100 गुना तक सुधारा जाता है क्योंकि फ्रैंक-रीड स्रोत [[ अव्यवस्था |अव्यवस्था]] का स्रोत नैनो परतों में काम नहीं कर सकता है।


इस तरह की सुपरलैटिस सामग्री की बढ़ी हुई यांत्रिक [[कठोरता]] की पुष्टि सबसे पहले 1978 में अल-क्यू और अल-एग पर लेहोक्ज़की द्वारा की गई थी।<ref>{{cite journal|last1=Lehoczky|first1=S. L.|title=पतली परत वाली धातु के लैमिनेट्स में विस्थापन पीढ़ी और गति की मंदता|journal=Acta Metallurgica|date=1973|volume=41|issue=26|page=1814}}</ref> और बाद में बार्नेट और स्पोर्ल जैसे कई अन्य लोगों द्वारा<ref>{{cite journal | last1=Yashar | first1=P. | last2=Barnett | first2=S. A. | last3=Rechner | first3=J. | last4=Sproul | first4=W. D. | title=Structure and mechanical properties of polycrystalline CrN/TiN superlattices | journal=Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films | publisher=American Vacuum Society | volume=16 | issue=5 | year=1998 | issn=0734-2101 | doi=10.1116/1.581439 | pages=2913–2918| bibcode=1998JVSTA..16.2913Y }}</ref> हार्ड भौतिक वाष्प जमाव कोटिंग्स पर।
इस प्रकार की अति जालक पदार्थ की बढ़ी हुई यांत्रिक [[कठोरता|दृढ़ता]] की पुष्टि सबसे पहले 1978 में Al-Cu और Al-Ag पर लेहोक्ज़की द्वारा की गई थी,<ref>{{cite journal|last1=Lehoczky|first1=S. L.|title=पतली परत वाली धातु के लैमिनेट्स में विस्थापन पीढ़ी और गति की मंदता|journal=Acta Metallurgica|date=1973|volume=41|issue=26|page=1814}}</ref> और बाद में कई अन्य लोगों द्वारा की गई,<ref>{{cite journal | last1=Yashar | first1=P. | last2=Barnett | first2=S. A. | last3=Rechner | first3=J. | last4=Sproul | first4=W. D. | title=Structure and mechanical properties of polycrystalline CrN/TiN superlattices | journal=Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films | publisher=American Vacuum Society | volume=16 | issue=5 | year=1998 | issn=0734-2101 | doi=10.1116/1.581439 | pages=2913–2918| bibcode=1998JVSTA..16.2913Y }}</ref> जैसे कि दृढ़ पीवीडी लेपन पर बार्नेट और स्पोर्ल।


== सेमीकंडक्टर गुण ==
== अर्धचालक गुण ==


यदि सुपरलैटिस अलग-अलग [[ऊर्जा अंतराल]] के साथ दो सेमीकंडक्टर सामग्रियों से बना है, तो प्रत्येक क्वांटम अच्छी तरह से नए [[चयन नियम]] स्थापित करता है जो संरचना के माध्यम से आवेशों के प्रवाह की स्थितियों को प्रभावित करते हैं। विकास की दिशा में आवधिक संरचना बनाने के लिए दो अलग-अलग अर्धचालक सामग्री एक-दूसरे पर वैकल्पिक रूप से जमा की जाती हैं। [[ लियो इसकी ]] और [[लैप चमकता है]] द्वारा सिंथेटिक सुपरलैटिस के 1970 के प्रस्ताव के बाद से,<ref>{{Cite journal | last1 = Esaki | first1 = L. | last2 = Tsu | first2 = R. | doi = 10.1147/rd.141.0061 | title = सेमीकंडक्टर्स में सुपरलैटिस और नेगेटिव डिफरेंशियल कंडक्टिविटी| journal = IBM Journal of Research and Development | volume = 14 | pages = 61–65 | year = 1970 }}</ref> ऐसे अल्ट्रा-फाइन अर्धचालकों की भौतिकी में प्रगति हुई है, जिन्हें वर्तमान में क्वांटम संरचनाएं कहा जाता है। क्वांटम कारावास की अवधारणा ने पृथक क्वांटम वेल हेटरोस्ट्रक्चर में क्वांटम आकार के प्रभावों का अवलोकन किया है और टनलिंग घटना के माध्यम से सुपरलैटिस से निकटता से संबंधित है। इसलिए, इन दो विचारों पर अक्सर एक ही भौतिक आधार पर चर्चा की जाती है, लेकिन प्रत्येक में अलग-अलग भौतिकी होती है जो विद्युत और ऑप्टिकल उपकरणों में अनुप्रयोगों के लिए उपयोगी होती है।
यदि अति जालक अलग-अलग [[ऊर्जा अंतराल]] के साथ दो अर्धचालक पदार्थों से बना है, तो प्रत्येक क्वांटम ठीक रूप से नवीन [[चयन नियम]] स्थापित करता है जो संरचना के माध्यम से आवेशों के प्रवाह की स्थितियों को प्रभावित करते हैं। विकास की दिशा में आवधिक संरचना बनाने के लिए दो अलग-अलग अर्धचालक पदार्थ एक-दूसरे पर वैकल्पिक रूप से एकत्रित की जाती हैं। [[ लियो इसकी |लियो इसकी]] और [[लैप चमकता है|राफेल त्सू]] द्वारा कृत्रिम अति जालक के 1970 के प्रस्ताव के बाद से,<ref>{{Cite journal | last1 = Esaki | first1 = L. | last2 = Tsu | first2 = R. | doi = 10.1147/rd.141.0061 | title = सेमीकंडक्टर्स में सुपरलैटिस और नेगेटिव डिफरेंशियल कंडक्टिविटी| journal = IBM Journal of Research and Development | volume = 14 | pages = 61–65 | year = 1970 }}</ref> ऐसे अति सूक्ष्म अर्धचालकों की भौतिकी में प्रगति हुई है, जिन्हें वर्तमान में क्वांटम संरचनाएं कहा जाता है। क्वांटम परिरोधन की अवधारणा ने पृथक क्वांटम अनुकूल विषम संरचना में क्वांटम आकार के प्रभावों का अवलोकन किया है और सुरंगन घटना के माध्यम से अति जालक से निकटता से संबंधित है। इसलिए, इन दो विचारों पर प्रायः एक ही भौतिक आधार पर चर्चा की जाती है, परन्तु प्रत्येक में अलग-अलग भौतिकी होती है जो विद्युत और प्रकाशिक उपकरणों में अनुप्रयोगों के लिए उपयोगी होती है।


== सेमीकंडक्टर सुपरलैटिस प्रकार ==
== अर्धचालक अति जालक प्रकार ==


सुपरलैटिस मिनीबैंड संरचनाएं [[heterojunction]] प्रकार पर निर्भर करती हैं, या तो टाइप I, टाइप II या टाइप III। टाइप I के लिए [[चालन बैंड]] के नीचे और वैलेंस सबबैंड के शीर्ष एक ही अर्धचालक परत में बनते हैं। टाइप II में चालन और वैलेंस सबबैंड वास्तविक और पारस्परिक दोनों जगहों में कंपित होते हैं, ताकि इलेक्ट्रॉनों और छिद्रों को अलग-अलग परतों में सीमित किया जा सके। टाइप III सुपरलैटिस में [[ अर्द्ध धातु ]] सामग्री शामिल होती है, जैसे एचजीटीई / [[सीडीटीई]]। हालाँकि कंडक्शन सबबैंड के नीचे और वैलेंस सबबैंड के शीर्ष टाइप III सुपरलैटिस में एक ही सेमीकंडक्टर परत में बनते हैं, जो टाइप I सुपरलैटिस के समान है, टाइप III सुपरलैटिस के बैंड गैप को सेमीकंडक्टर से शून्य बैंड तक लगातार समायोजित किया जा सकता है। गैप सामग्री और नेगेटिव बैंड गैप के साथ सेमीमेटल।
अति जालक मिनीबैंड संरचनाएं [[heterojunction]] प्रकार पर निर्भर करती हैं, या तो टाइप I, टाइप II या टाइप III। टाइप I के लिए [[चालन बैंड]] के नीचे और वैलेंस सबबैंड के शीर्ष एक ही अर्धचालक परत में बनते हैं। टाइप II में चालन और वैलेंस सबबैंड वास्तविक और पारस्परिक दोनों जगहों में कंपित होते हैं, ताकि इलेक्ट्रॉनों और छिद्रों को अलग-अलग परतों में सीमित किया जा सके। टाइप III अति जालक में [[ अर्द्ध धातु |अर्द्ध धातु]] पदार्थ शामिल होती है, जैसे एचजीटीई / [[सीडीटीई]]। हालाँकि कंडक्शन सबबैंड के नीचे और वैलेंस सबबैंड के शीर्ष टाइप III अति जालक में एक ही अर्धचालक परत में बनते हैं, जो टाइप I अति जालक के समान है, टाइप III अति जालक के बैंड गैप को अर्धचालक से शून्य बैंड तक लगातार समायोजित किया जा सकता है। गैप पदार्थ और नेगेटिव बैंड गैप के साथ सेमीमेटल।


क्वासिपरियोडिक सुपरलैटिस के एक अन्य वर्ग का नाम [[फिबोनाची अनुक्रम]] नाम पर रखा गया है। एक [[फाइबोनैचि]] सुपरलैटिस को एक आयामी [[quasicrystal]] के रूप में देखा जा सकता है, जहां या तो इलेक्ट्रॉन होपिंग ट्रांसफर या ऑन-साइट ऊर्जा फाइबोनैचि अनुक्रम में व्यवस्थित दो मान लेती है।
क्वासिपरियोडिक अति जालक के एक अन्य वर्ग का नाम [[फिबोनाची अनुक्रम]] नाम पर रखा गया है। एक [[फाइबोनैचि]] अति जालक को एक आयामी [[quasicrystal]] के रूप में देखा जा सकता है, जहां या तो इलेक्ट्रॉन होपिंग ट्रांसफर या ऑन-साइट ऊर्जा फाइबोनैचि अनुक्रम में व्यवस्थित दो मान लेती है।


== सेमीकंडक्टर सामग्री ==
== अर्धचालक पदार्थ ==


[[File:GaAs-AlAs SL.JPG|300px|left|thumb|GaAs/AlAs सुपरलैटिस और विकास दिशा (z) के साथ चालन और वैलेंस बैंड की संभावित प्रोफ़ाइल।]]सेमीकंडक्टर सामग्री, जो सुपरलैटिस संरचनाओं को बनाने के लिए उपयोग की जाती है, को तत्व समूहों, IV, III-V और II-VI द्वारा विभाजित किया जा सकता है। जबकि समूह III-V अर्धचालक (विशेष रूप से GaAs/Al<sub>x</sub>यहाँ<sub>1−x</sub>As) का बड़े पैमाने पर अध्ययन किया गया है, जैसे कि Si<sub>x</sub>जीई<sub>1−x</sub> बड़ी जाली बेमेल के कारण सिस्टम को महसूस करना अधिक कठिन होता है। फिर भी, इन क्वांटम संरचनाओं में सबबैंड संरचनाओं का तनाव संशोधन दिलचस्प है और इसने बहुत ध्यान आकर्षित किया है।
[[File:GaAs-AlAs SL.JPG|300px|left|thumb|GaAs/AlAs अति जालक और विकास दिशा (z) के साथ चालन और वैलेंस बैंड की संभावित प्रोफ़ाइल।]]अर्धचालक पदार्थ, जो अति जालक संरचनाओं को बनाने के लिए उपयोग की जाती है, को तत्व समूहों, IV, III-V और II-VI द्वारा विभाजित किया जा सकता है। जबकि समूह III-V अर्धचालक (विशेष रूप से GaAs/Al<sub>x</sub>यहाँ<sub>1−x</sub>As) का बड़े पैमाने पर अध्ययन किया गया है, जैसे कि Si<sub>x</sub>जीई<sub>1−x</sub> बड़ी जाली बेमेल के कारण प्रणाली को महसूस करना अधिक कठिन होता है। फिर भी, इन क्वांटम संरचनाओं में सबबैंड संरचनाओं का तनाव संशोधन दिलचस्प है और इसने बहुत ध्यान आकर्षित किया है।


GaAs/AlAs प्रणाली में GaAs और AlAs के बीच जाली स्थिरांक में अंतर और उनके थर्मल विस्तार गुणांक का अंतर दोनों ही छोटे हैं। इस प्रकार, [[एपिटैक्सियल ग्रोथ]] तापमान से ठंडा होने के बाद कमरे के तापमान पर शेष तनाव को कम किया जा सकता है। GaAs/Al का उपयोग करके पहली रचनात्मक सुपरलैटिस का एहसास हुआ<sub>x</sub>यहाँ<sub>1−x</sub>सामग्री प्रणाली के रूप में।
GaAs/AlAs प्रणाली में GaAs और AlAs के बीच जाली स्थिरांक में अंतर और उनके थर्मल विस्तार गुणांक का अंतर दोनों ही छोटे हैं। इस प्रकार, [[एपिटैक्सियल ग्रोथ]] तापमान से ठंडा होने के बाद कमरे के तापमान पर शेष तनाव को कम किया जा सकता है। GaAs/Al का उपयोग करके पहली रचनात्मक अति जालक का एहसास हुआ<sub>x</sub>यहाँ<sub>1−x</sub>पदार्थ प्रणाली के रूप में।


एक बार जब दो क्रिस्टल संरेखित हो जाते हैं तो एक [[ग्राफीन]]/[[बोरॉन नाइट्राइड]] सिस्टम एक सेमीकंडक्टर सुपरलैटिस बनाता है। इसके आवेश वाहक कम ऊर्जा अपव्यय के साथ विद्युत क्षेत्र के लंबवत गति करते हैं। एच-बीएन में ग्राफीन के समान एक [[हेक्सागोनल]] संरचना है। सुपरलैटिस ने [[उलटा समरूपता]] तोड़ दी है। स्थानीय रूप से, टोपोलॉजिकल धाराएं लागू वर्तमान की तुलना में तुलनीय हैं, जो बड़े घाटी-हॉल कोणों को दर्शाती हैं।<ref>{{Cite journal | doi = 10.1126/science.1254966| title = ग्राफीन सुपरलैटिस में सामयिक धाराओं का पता लगाना| journal = Science| year = 2014| last1 = Gorbachev | first1 = R. V.| last2 = Song | first2 = J. C. W.| last3 = Yu | first3 = G. L.| last4 = Kretinin | first4 = A. V.| last5 = Withers | first5 = F.| last6 = Cao | first6 = Y.| last7 = Mishchenko | first7 = A.| last8 = Grigorieva | first8 = I. V.| last9 = Novoselov | first9 = K. S.| last10 = Levitov | first10 = L. S.| last11 = Geim | first11 = A. K.|arxiv = 1409.0113 |bibcode = 2014Sci...346..448G | volume=346 | issue = 6208| pages=448–451 | pmid=25342798| s2cid = 2795431}}</ref>
एक बार जब दो क्रिस्टल संरेखित हो जाते हैं तो एक [[ग्राफीन]]/[[बोरॉन नाइट्राइड]] प्रणाली एक अर्धचालक अति जालक बनाता है। इसके आवेश वाहक कम ऊर्जा अपव्यय के साथ विद्युत क्षेत्र के लंबवत गति करते हैं। एच-बीएन में ग्राफीन के समान एक [[हेक्सागोनल]] संरचना है। अति जालक ने [[उलटा समरूपता]] तोड़ दी है। स्थानीय रूप से, टोपोलॉजिकल धाराएं लागू वर्तमान की तुलना में तुलनीय हैं, जो बड़े घाटी-हॉल कोणों को दर्शाती हैं।<ref>{{Cite journal | doi = 10.1126/science.1254966| title = ग्राफीन सुपरलैटिस में सामयिक धाराओं का पता लगाना| journal = Science| year = 2014| last1 = Gorbachev | first1 = R. V.| last2 = Song | first2 = J. C. W.| last3 = Yu | first3 = G. L.| last4 = Kretinin | first4 = A. V.| last5 = Withers | first5 = F.| last6 = Cao | first6 = Y.| last7 = Mishchenko | first7 = A.| last8 = Grigorieva | first8 = I. V.| last9 = Novoselov | first9 = K. S.| last10 = Levitov | first10 = L. S.| last11 = Geim | first11 = A. K.|arxiv = 1409.0113 |bibcode = 2014Sci...346..448G | volume=346 | issue = 6208| pages=448–451 | pmid=25342798| s2cid = 2795431}}</ref>




===उत्पादन===
===उत्पादन===
विभिन्न तकनीकों का उपयोग करके सुपरलैटिस का उत्पादन किया जा सकता है, लेकिन [[आणविक-बीम एपिटॉक्सी]] (एमबीई) और [[स्पटरिंग]] सबसे आम हैं। इन विधियों से, परतों को केवल कुछ परमाणु रिक्ति की मोटाई के साथ बनाया जा सकता है। सुपरलैटिस निर्दिष्ट करने का एक उदाहरण है [{{chem|Fe|20|V|30}}]<sub>20</sub>. यह 20Å आयरन (Fe) और 30Å वैनेडियम (V) की एक द्वि-परत को 20 बार दोहराता है, इस प्रकार 1000Å या 100 एनएम की कुल मोटाई प्राप्त करता है। सेमीकंडक्टर सुपरलैटिस बनाने के साधन के रूप में एमबीई तकनीक का प्राथमिक महत्व है। MBE प्रौद्योगिकी के अलावा, [[धातु कार्बनिक रासायनिक वाष्प जमाव]] | धातु-कार्बनिक रासायनिक वाष्प जमाव (MO-CVD) ने सुपरकंडक्टर सुपरलैटिस के विकास में योगदान दिया है, जो कि InGaAsP मिश्र धातुओं जैसे चतुर्धातुक III-V यौगिक अर्धचालकों से बना है। नई तकनीकों में अल्ट्राहाई वैक्यूम (यूएचवी) प्रौद्योगिकियों के साथ गैस स्रोत से निपटने का एक संयोजन शामिल है जैसे धातु-कार्बनिक अणु स्रोत सामग्री के रूप में और गैस-स्रोत एमबीई हाइब्रिड गैसों जैसे कि आर्सिन ({{chem|AsH|3}}) और फॉस्फीन ({{chem|PH|3}}) विकसित किया गया है।
विभिन्न तकनीकों का उपयोग करके अति जालक का उत्पादन किया जा सकता है, परन्तु [[आणविक-बीम एपिटॉक्सी]] (एमबीई) और [[स्पटरिंग]] सबसे आम हैं। इन विधियों से, परतों को केवल कुछ परमाणु रिक्ति की मोटाई के साथ बनाया जा सकता है। अति जालक निर्दिष्ट करने का एक उदाहरण है [{{chem|Fe|20|V|30}}]<sub>20</sub>. यह 20Å आयरन (Fe) और 30Å वैनेडियम (V) की एक द्वि-परत को 20 बार दोहराता है, इस प्रकार 1000Å या 100 एनवीनम की कुल मोटाई प्राप्त करता है। अर्धचालक अति जालक बनाने के साधन के रूप में एमबीई तकनीक का प्राथमिक महत्व है। MBE प्रौद्योगिकी के अलावा, [[धातु कार्बनिक रासायनिक वाष्प जमाव]] | धातु-कार्बनिक रासायनिक वाष्प जमाव (MO-CVD) ने अतिसंवाहक अति जालक के विकास में योगदान दिया है, जो कि InGaAsP मिश्र धातुओं जैसे चतुर्धातुक III-V यौगिक अर्धचालकों से बना है। नई तकनीकों में अल्ट्राहाई वैक्यूम (यूएचवी) प्रौद्योगिकियों के साथ गैस स्रोत से निपटने का एक संयोजन शामिल है जैसे धातु-कार्बनिक अणु स्रोत पदार्थ के रूप में और गैस-स्रोत एमबीई हाइब्रिड गैसों जैसे कि आर्सिन ({{chem|AsH|3}}) और फॉस्फीन ({{chem|PH|3}}) विकसित किया गया है।


आम तौर पर बोलना एमबीई बाइनरी सिस्टम में तीन तापमानों का उपयोग करने की एक विधि है, उदाहरण के लिए, सब्सट्रेट तापमान, समूह III के स्रोत सामग्री तापमान और III-V यौगिकों के मामले में समूह V तत्व।
आम तौर पर बोलना एमबीई बाइनरी प्रणाली में तीन तापमानों का उपयोग करने की एक विधि है, उदाहरण के लिए, सब्सट्रेट तापमान, समूह III के स्रोत पदार्थ तापमान और III-V यौगिकों के मामले में समूह V तत्व।


उत्पादित सुपरलैटिस की संरचनात्मक गुणवत्ता को एक्स-रे विवर्तन या [[न्यूट्रॉन विवर्तन]] स्पेक्ट्रा के माध्यम से सत्यापित किया जा सकता है जिसमें विशिष्ट उपग्रह शिखर होते हैं। अल्टरनेटिंग लेयरिंग से जुड़े अन्य प्रभाव हैं: [[विशाल चुंबकत्व]], एक्स-रे और न्यूट्रॉन दर्पणों के लिए ट्यून करने योग्य परावर्तकता, न्यूट्रॉन [[स्पिन ध्रुवीकरण]], और लोचदार और ध्वनिक गुणों में परिवर्तन। इसके घटकों की प्रकृति के आधार पर, एक सुपरलैटिस को चुंबकीय, ऑप्टिकल या सेमीकंडक्टिंग कहा जा सकता है।
उत्पादित अति जालक की संरचनात्मक गुणवत्ता को एक्स-किरणें विवर्तन या [[न्यूट्रॉन विवर्तन]] स्पेक्ट्रा के माध्यम से सत्यापित किया जा सकता है जिसमें विशिष्ट उपग्रह शिखर होते हैं। अल्टरनेटिंग लेयरिंग से जुड़े अन्य प्रभाव हैं: [[विशाल चुंबकत्व]], एक्स-किरणें और न्यूट्रॉन दर्पणों के लिए ट्यून करने योग्य परावर्तकता, न्यूट्रॉन [[स्पिन ध्रुवीकरण]], और प्रत्यास्थ और ध्वनिक गुणों में परिवर्तन। इसके घटकों की प्रकृति के आधार पर, एक अति जालक को चुंबकीय, प्रकाशिक या सेमीकंडक्टिंग कहा जा सकता है।


[[File:Fe20v30.png|300px|right|thumb|एक्स-रे और न्यूट्रॉन प्रकीर्णन [Fe<sub>20</sub>V<sub>30</sub>]<sub>20</sub> सुपर लेटेक्स।]]
[[File:Fe20v30.png|300px|right|thumb|एक्स-किरणें और न्यूट्रॉन प्रकीर्णन [Fe<sub>20</sub>V<sub>30</sub>]<sub>20</sub> अति जालक।]]


== मिनीबैंड संरचना ==
== मिनीबैंड संरचना ==


एक आवधिक सुपरलैटिस की योजनाबद्ध संरचना नीचे दिखाई गई है, जहां ए और बी संबंधित परत मोटाई ए और बी (अवधि:) के दो अर्धचालक पदार्थ हैं। <math>d=a+b</math>). जब ए और बी इंटरटॉमिक स्पेसिंग की तुलना में बहुत छोटे नहीं होते हैं, तो मूल बल्क सेमीकंडक्टर्स की बैंड संरचना से प्राप्त एक प्रभावी क्षमता द्वारा इन तेजी से बदलती क्षमता को बदलकर एक पर्याप्त सन्निकटन प्राप्त किया जाता है। व्यक्तिगत परतों में से प्रत्येक में 1D श्रोडिंगर समीकरणों को हल करना सीधा है, जिनके समाधान <math> \psi</math> वास्तविक या काल्पनिक घातांकों के रैखिक संयोजन हैं।
एक आवधिक अति जालक की योजनाबद्ध संरचना नीचे दिखाई गई है, जहां ए और बी संबंधित परत मोटाई ए और बी (अवधि:) के दो अर्धचालक पदार्थ हैं। <math>d=a+b</math>). जब ए और बी इंटरटॉमिक स्पेसिंग की तुलना में बहुत छोटे नहीं होते हैं, तो मूल बल्क अर्धचालक्स की बैंड संरचना से प्राप्त एक प्रभावी क्षमता द्वारा इन तेजी से बदलती क्षमता को बदलकर एक पर्याप्त सन्निकटन प्राप्त किया जाता है। व्यक्तिगत परतों में से प्रत्येक में 1D श्रोडिंगर समीकरणों को हल करना सीधा है, जिनके समाधान <math> \psi</math> वास्तविक या काल्पनिक घातांकों के रैखिक संयोजन हैं।


एक बड़ी बाधा मोटाई के लिए, सुरंग रहित फैलाव रहित अवस्थाओं के संबंध में सुरंग बनाना एक कमजोर गड़बड़ी है, जो पूरी तरह से सीमित हैं। इस मामले में फैलाव संबंध <math> E_z(k_z) </math>, आवधिक खत्म <math>2 \pi /d </math> इससे अधिक <math> d=a+b </math> बलोच प्रमेय के आधार पर, पूरी तरह से ज्यावक्रीय है:
एक बड़ी बाधा मोटाई के लिए, सुरंग रहित फैलाव रहित अवस्थाओं के संबंध में सुरंग बनाना एक कमजोर गड़बड़ी है, जो पूर्ण रूप से सीमित हैं। इस मामले में फैलाव संबंध <math> E_z(k_z) </math>, आवधिक खत्म <math>2 \pi /d </math> इससे अधिक <math> d=a+b </math> बलोच प्रमेय के आधार पर, पूर्ण रूप से ज्यावक्रीय है:


:<math>\ E_z(k_z)=\frac{\Delta}{2}(1-\cos(k_z d))</math>
:<math>\ E_z(k_z)=\frac{\Delta}{2}(1-\cos(k_z d))</math>
Line 52: Line 51:


:<math>\ {m^* = \frac{\hbar^2}{\partial^2 E / \partial k^2}}|_{k=0}</math>
:<math>\ {m^* = \frac{\hbar^2}{\partial^2 E / \partial k^2}}|_{k=0}</math>
मिनीबैंड के मामले में, यह साइनसोइडल कैरेक्टर अब संरक्षित नहीं है। मिनीबैंड में केवल उच्च ऊपर (वेववेक्टरों के लिए अच्छी तरह से परे <math>2 \pi /d</math>) शीर्ष वास्तव में 'संवेदी' है और प्रभावी द्रव्यमान परिवर्तन संकेत करता है। मिनीबैंड फैलाव का आकार मिनीबैंड परिवहन को गहराई से प्रभावित करता है और विस्तृत मिनीबैंड दिए जाने पर सटीक फैलाव संबंध गणना की आवश्यकता होती है। एकल मिनीबैंड परिवहन को देखने की शर्त किसी भी प्रक्रिया द्वारा इंटरमिनिबैंड ट्रांसफर की अनुपस्थिति है। तापीय क्वांटम k<sub>B</sub>टी ऊर्जा अंतर से बहुत छोटा होना चाहिए <math> E_2-E_1</math> लागू विद्युत क्षेत्र की उपस्थिति में भी पहले और दूसरे मिनीबैंड के बीच।
मिनीबैंड के मामले में, यह साइनसोइडल कैरेक्टर अब संरक्षित नहीं है। मिनीबैंड में केवल उच्च ऊपर (वेववेक्टरों के लिए ठीक रूप से परे <math>2 \pi /d</math>) शीर्ष वास्तव में 'संवेदी' है और प्रभावी द्रव्यमान परिवर्तन संकेत करता है। मिनीबैंड फैलाव का आकार मिनीबैंड परिवहन को गहराई से प्रभावित करता है और विस्तृत मिनीबैंड दिए जाने पर सटीक फैलाव संबंध गणना की आवश्यकता होती है। एकल मिनीबैंड परिवहन को देखने की शर्त किसी भी प्रक्रिया द्वारा इंटरमिनिबैंड ट्रांसफर की अनुपस्थिति है। तापीय क्वांटम k<sub>B</sub>टी ऊर्जा अंतर से बहुत छोटा होना चाहिए <math> E_2-E_1</math> लागू विद्युत क्षेत्र की उपस्थिति में भी पहले और दूसरे मिनीबैंड के बीच।


== बलोच राज्य ==
== बलोच राज्य ==
एक आदर्श सुपरलैटिस के लिए समतल तरंगों के उत्पादों द्वारा [[खुद के राज्यों]] राज्यों का एक पूरा सेट बनाया जा सकता है <math> e^{ i \mathbf{k} \cdot \mathbf{r} }/ 2\pi </math> और एक जेड-निर्भर फ़ंक्शन <math>f_k (z)</math> जो eigenvalue समीकरण को संतुष्ट करता है
एक आदर्श अति जालक के लिए समतल तरंगों के उत्पादों द्वारा [[खुद के राज्यों]] राज्यों का एक पूरा सेट बनाया जा सकता है <math> e^{ i \mathbf{k} \cdot \mathbf{r} }/ 2\pi </math> और एक जेड-निर्भर फ़ंक्शन <math>f_k (z)</math> जो eigenvalue समीकरण को संतुष्ट करता है


:<math> \left( E_c(z) - \frac{\partial }{\partial z} \frac{\hbar^2}{2 m_c (z)}  \frac{\partial }{\partial z} + \frac {\hbar^2 \mathbf{k} ^2}{2m_c (z)} \right) f_k (z) = E f_k (z) </math>.
:<math> \left( E_c(z) - \frac{\partial }{\partial z} \frac{\hbar^2}{2 m_c (z)}  \frac{\partial }{\partial z} + \frac {\hbar^2 \mathbf{k} ^2}{2m_c (z)} \right) f_k (z) = E f_k (z) </math>.


जैसा <math> E_c (z) </math> और <math> m_c(z) </math> सुपरलैटिस अवधि डी के साथ आवधिक कार्य हैं, ईजेनस्टेट्स [[बलोच राज्य]] हैं <math> f_k (z)= \phi _{q, \mathbf{k}}(z)</math> ऊर्जा के साथ <math>E^\nu (q, \mathbf{k})</math>. कश्मीर में पहले क्रम [[गड़बड़ी सिद्धांत]] के भीतर<sup>2</sup>, व्यक्ति ऊर्जा प्राप्त करता है
जैसा <math> E_c (z) </math> और <math> m_c(z) </math> अति जालक अवधि डी के साथ आवधिक कार्य हैं, ईजेनस्टेट्स [[बलोच राज्य]] हैं <math> f_k (z)= \phi _{q, \mathbf{k}}(z)</math> ऊर्जा के साथ <math>E^\nu (q, \mathbf{k})</math>. कश्मीर में पहले क्रम [[गड़बड़ी सिद्धांत]] के भीतर<sup>2</sup>, व्यक्ति ऊर्जा प्राप्त करता है


:<math> E^ \nu (q, \mathbf{k}) \approx E^ \nu(q, \mathbf{0}) +  \langle \phi _{q, \mathbf{k}} \mid \frac{\hbar^2 \mathbf{k}^2}{2m_c (z)} \mid \phi _{q, \mathbf{k}} \rangle </math>.
:<math> E^ \nu (q, \mathbf{k}) \approx E^ \nu(q, \mathbf{0}) +  \langle \phi _{q, \mathbf{k}} \mid \frac{\hbar^2 \mathbf{k}^2}{2m_c (z)} \mid \phi _{q, \mathbf{k}} \rangle </math>.
Line 70: Line 69:
== Wannier फ़ंक्शन ==
== Wannier फ़ंक्शन ==


परिभाषा के अनुसार बलोच के प्रमेय को पूरे सुपरलैटिस पर निरूपित किया गया है। यदि विद्युत क्षेत्र लागू होते हैं या सुपरलैटिस की परिमित लंबाई के कारण प्रभाव पर विचार किया जाता है तो यह कठिनाइयाँ प्रदान कर सकता है। इसलिए, आधार राज्यों के विभिन्न सेटों का उपयोग करना अक्सर सहायक होता है जो बेहतर स्थानीयकृत होते हैं। एक आकर्षक विकल्प एकल क्वांटम कुओं के आइजेनस्टेट्स का उपयोग होगा। फिर भी, इस तरह के विकल्प में गंभीर कमी है: संबंधित राज्य दो अलग-अलग [[हैमिल्टनियन (क्वांटम यांत्रिकी)]] के समाधान हैं, प्रत्येक दूसरे कुएं की उपस्थिति की उपेक्षा करते हैं। इस प्रकार ये अवस्थाएं ऑर्थोगोनल नहीं हैं, जिससे जटिलताएं पैदा होती हैं। आमतौर पर, युग्मन का अनुमान इस दृष्टिकोण के भीतर हैमिल्टनियन स्थानांतरण द्वारा लगाया जाता है। इन कारणों से, Wannier फ़ंक्शन के सेट का उपयोग करना अधिक सुविधाजनक होता है।
परिभाषा के अनुसार बलोच के प्रमेय को पूरे अति जालक पर निरूपित किया गया है। यदि विद्युत क्षेत्र लागू होते हैं या अति जालक की परिमित लंबाई के कारण प्रभाव पर विचार किया जाता है तो यह कठिनाइयाँ प्रदान कर सकता है। इसलिए, आधार राज्यों के विभिन्न सेटों का उपयोग करना प्रायः सहायक होता है जो बेहतर स्थानीयकृत होते हैं। एक आकर्षक विकल्प एकल क्वांटम कूप के आइजेनस्टेट्स का उपयोग होगा। फिर भी, इस प्रकार के विकल्प में गंभीर कमी है: संबंधित राज्य दो अलग-अलग [[हैमिल्टनियन (क्वांटम यांत्रिकी)]] के समाधान हैं, प्रत्येक दूसरे कुएं की उपस्थिति की उपेक्षा करते हैं। इस प्रकार ये अवस्थाएं ऑर्थोगोनल नहीं हैं, जिससे जटिलताएं पैदा होती हैं। सामान्यतः, युग्मन का अनुमान इस दृष्टिकोण के भीतर हैमिल्टनियन स्थानांतरण द्वारा लगाया जाता है। इन कारणों से, Wannier फ़ंक्शन के सेट का उपयोग करना अधिक सुविधाजनक होता है।


== वानियर-स्टार्क सीढ़ी ==
== वानियर-स्टार्क सीढ़ी ==


विद्युत क्षेत्र F को सुपरलैटिस संरचना में लागू करने से हैमिल्टन को एक अतिरिक्त स्केलर क्षमता eφ(z) = -eFz प्रदर्शित करने का कारण बनता है जो ट्रांसलेशनल इनवेरियन को नष्ट कर देता है। इस मामले में, वेवफंक्शन के साथ एक ईजेनस्टेट दिया गया <math> \Phi_0 (z) </math> और ऊर्जा <math>E_0</math>, फिर वेवफंक्शन के अनुरूप राज्यों का सेट <math>\Phi_j (z)= \Phi_0 (z-jd) </math> ऊर्जा ई के साथ हैमिल्टनियन के स्वदेशी हैं<sub>''j''</sub> = और<sub>0</sub> - जेफ। ये राज्य समान रूप से ऊर्जा और वास्तविक स्थान दोनों में हैं और तथाकथित वानियर-स्टार्क सीढ़ी बनाते हैं। सामर्थ <math> \Phi_0 (z)</math> अनंत क्रिस्टल के लिए बाध्य नहीं है, जिसका तात्पर्य निरंतर ऊर्जा स्पेक्ट्रम से है। फिर भी, इन वानियर-स्टार्क सीढ़ी के विशिष्ट ऊर्जा स्पेक्ट्रम को प्रयोगात्मक रूप से हल किया जा सकता है।
विद्युत क्षेत्र F को अति जालक संरचना में लागू करने से हैमिल्टन को एक अतिरिक्त स्केलर क्षमता eφ(z) = -eFz प्रदर्शित करने का कारण बनता है जो ट्रांसलेशनल इनवेरियन को नष्ट कर देता है। इस मामले में, वेवफंक्शन के साथ एक ईजेनस्टेट दिया गया <math> \Phi_0 (z) </math> और ऊर्जा <math>E_0</math>, फिर वेवफंक्शन के अनुरूप राज्यों का सेट <math>\Phi_j (z)= \Phi_0 (z-jd) </math> ऊर्जा ई के साथ हैमिल्टनियन के स्वदेशी हैं<sub>''j''</sub> = और<sub>0</sub> - जेफ। ये राज्य समान रूप से ऊर्जा और वास्तविक स्थान दोनों में हैं और तथाकथित वानियर-स्टार्क सीढ़ी बनाते हैं। सामर्थ <math> \Phi_0 (z)</math> अनंत क्रिस्टल के लिए बाध्य नहीं है, जिसका तात्पर्य निरंतर ऊर्जा स्पेक्ट्रम से है। फिर भी, इन वानियर-स्टार्क सीढ़ी के विशिष्ट ऊर्जा स्पेक्ट्रम को प्रयोगात्मक रूप से हल किया जा सकता है।


== परिवहन ==
== परिवहन ==


[[File:Sltransport.jpg|300px|right|thumb|सुपरलैटिस परिवहन के लिए विभिन्न मानक दृष्टिकोणों का अवलोकन।]]एक सुपरलैटिस में आवेश वाहकों की गति अलग-अलग परतों में भिन्न होती है: आवेश वाहकों की [[इलेक्ट्रॉन गतिशीलता]] को बढ़ाया जा सकता है, जो उच्च-आवृत्ति वाले उपकरणों के लिए फायदेमंद है, और [[लेज़र]]ों में विशिष्ट ऑप्टिकल गुणों का उपयोग किया जाता है।
[[File:Sltransport.jpg|300px|right|thumb|अति जालक परिवहन के लिए विभिन्न मानक दृष्टिकोणों का अवलोकन।]]एक अति जालक में आवेश वाहकों की गति अलग-अलग परतों में भिन्न होती है: आवेश वाहकों की [[इलेक्ट्रॉन गतिशीलता]] को बढ़ाया जा सकता है, जो उच्च-आवृत्ति वाले उपकरणों के लिए फायदेमंद है, और [[लेज़र]]ों में विशिष्ट प्रकाशिक गुणों का उपयोग किया जाता है।


यदि किसी धातु या अर्धचालक जैसे कंडक्टर पर बाहरी पूर्वाग्रह लागू होता है, तो आमतौर पर एक विद्युत प्रवाह उत्पन्न होता है। इस धारा का परिमाण सामग्री की बैंड संरचना, बिखरने की प्रक्रिया, लागू क्षेत्र की ताकत और कंडक्टर के संतुलन वाहक वितरण द्वारा निर्धारित किया जाता है।
यदि किसी धातु या अर्धचालक जैसे कंडक्टर पर बाहरी पूर्वाग्रह लागू होता है, तो सामान्यतः एक विद्युत प्रवाह उत्पन्न होता है। इस धारा का परिमाण पदार्थ की बैंड संरचना, बिखरने की प्रक्रिया, लागू क्षेत्र की ताकत और कंडक्टर के संतुलन वाहक वितरण द्वारा निर्धारित किया जाता है।


सुपरलैटिस नामक सुपरलैटिस का एक विशेष मामला स्पेसर्स द्वारा अलग किए गए सुपरकंडक्टिंग इकाइयों से बना है। प्रत्येक मिनीबैंड में सुपरकंडक्टिंग ऑर्डर पैरामीटर, जिसे सुपरकंडक्टिंग गैप कहा जाता है, अलग-अलग मान लेता है, एक मल्टी-गैप, या टू-गैप या मल्टीबैंड सुपरकंडक्टिविटी पैदा करता है।
अति जालक नामक अति जालक का एक विशेष मामला स्पेसर्स द्वारा अलग किए गए अतिचालक इकाइयों से बना है। प्रत्येक मिनीबैंड में अतिचालक ऑर्डर पैरामीटर, जिसे अतिचालक गैप कहा जाता है, अलग-अलग मान लेता है, एक मल्टी-गैप, या टू-गैप या मल्टीबैंड अतिसंवाहकता पैदा करता है।


हाल ही में, फेलिक्स और परेरा ने समय-समय पर फ़ोनों द्वारा थर्मल परिवहन की जांच की<ref>{{cite journal |last1=Felix |first1=Isaac M. |last2=Pereira |first2=Luiz Felipe C. |title=ग्राफीन-एचबीएन सुपरलैटिस रिबन की तापीय चालकता|journal=Scientific Reports |language=en |doi=10.1038/s41598-018-20997-8 |date=9 February 2018|volume=8 |issue=1 |page=2737 |pmid=29426893 |pmc=5807325 |bibcode=2018NatSR...8.2737F }}</ref> और क्वासिपरियोडिक<ref>{{cite journal |last1=Felix |first1=Isaac M. |last2=Pereira |first2=Luiz Felipe C. |title=क्वासिपरियोडिक ग्राफीन-एचबीएन सुपरलैटिस रिबन में सुसंगत थर्मल ट्रांसपोर्ट का दमन|url=https://www.sciencedirect.com/science/article/abs/pii/S0008622319313375?dgcid=author |journal=Carbon |pages=335–341 |language=en |doi=10.1016/j.carbon.2019.12.090 |date=30 April 2020|volume=160 |arxiv=2001.03072 |s2cid=210116531 }}</ref><ref>{{cite journal |last1=Felix |first1=Isaac M. |last2=Pereira |first2=Luiz Felipe C. |title=Thermal conductivity of Thue–Morse and double-period quasiperiodic graphene-hBN superlattices |url=https://www.sciencedirect.com/science/article/abs/pii/S0017931021015623 |journal=International Journal of Heat and Mass Transfer |publisher=Elsevier |pages=122464 |language=en |doi=10.1016/j.ijheatmasstransfer.2021.122464 |date=1 May 2022|volume=186 |s2cid=245712349 }}</ref><ref>{{cite web |last1=Félix |first1=Isaac de Macêdo |title=Condução de calor em nanofitas quase-periódicas de grafeno-hBN |url=https://repositorio.ufrn.br/handle/123456789/30749 |language=pt-BR |date=4 August 2020}}</ref> फाइबोनैचि अनुक्रम के अनुसार ग्राफीन-एचबीएन के सुपरलैटिस। उन्होंने बताया कि क्वासिपरियोडिसिटी बढ़ने के साथ सुसंगत थर्मल ट्रांसपोर्ट (फोनन लाइक-वेव) के योगदान को दबा दिया गया था।
हाल ही में, फेलिक्स और परेरा ने समय-समय पर फ़ोनों द्वारा थर्मल परिवहन की जांच की<ref>{{cite journal |last1=Felix |first1=Isaac M. |last2=Pereira |first2=Luiz Felipe C. |title=ग्राफीन-एचबीएन सुपरलैटिस रिबन की तापीय चालकता|journal=Scientific Reports |language=en |doi=10.1038/s41598-018-20997-8 |date=9 February 2018|volume=8 |issue=1 |page=2737 |pmid=29426893 |pmc=5807325 |bibcode=2018NatSR...8.2737F }}</ref> और क्वासिपरियोडिक<ref>{{cite journal |last1=Felix |first1=Isaac M. |last2=Pereira |first2=Luiz Felipe C. |title=क्वासिपरियोडिक ग्राफीन-एचबीएन सुपरलैटिस रिबन में सुसंगत थर्मल ट्रांसपोर्ट का दमन|url=https://www.sciencedirect.com/science/article/abs/pii/S0008622319313375?dgcid=author |journal=Carbon |pages=335–341 |language=en |doi=10.1016/j.carbon.2019.12.090 |date=30 April 2020|volume=160 |arxiv=2001.03072 |s2cid=210116531 }}</ref><ref>{{cite journal |last1=Felix |first1=Isaac M. |last2=Pereira |first2=Luiz Felipe C. |title=Thermal conductivity of Thue–Morse and double-period quasiperiodic graphene-hBN superlattices |url=https://www.sciencedirect.com/science/article/abs/pii/S0017931021015623 |journal=International Journal of Heat and Mass Transfer |publisher=Elsevier |pages=122464 |language=en |doi=10.1016/j.ijheatmasstransfer.2021.122464 |date=1 May 2022|volume=186 |s2cid=245712349 }}</ref><ref>{{cite web |last1=Félix |first1=Isaac de Macêdo |title=Condução de calor em nanofitas quase-periódicas de grafeno-hBN |url=https://repositorio.ufrn.br/handle/123456789/30749 |language=pt-BR |date=4 August 2020}}</ref> फाइबोनैचि अनुक्रम के अनुसार ग्राफीन-एचबीएन के अति जालक। उन्होंने बताया कि क्वासिपरियोडिसिटी बढ़ने के साथ सुसंगत थर्मल ट्रांसपोर्ट (फोनन लाइक-वेव) के योगदान को दबा दिया गया था।


== अन्य आयाम ==
== अन्य आयाम ==


द्वि-आयामी इलेक्ट्रॉन गैसों ([[2DEG]]) के प्रयोगों के लिए सामान्य रूप से उपलब्ध होने के तुरंत बाद, अनुसंधान समूहों ने संरचनाएं बनाने का प्रयास किया<ref>{{Cite journal | last1 = Heitmann | first1 = D. | last2 = Kotthaus | first2 = J. R. P. | doi = 10.1063/1.881355 | title = क्वांटम डॉट एरे की स्पेक्ट्रोस्कोपी| journal = Physics Today | volume = 46 | issue = 6 | pages = 56 | year = 1993 | bibcode = 1993PhT....46f..56H }}</ref> जिसे 2D कृत्रिम क्रिस्टल कहा जा सकता है। विचार यह है कि हेटेरोजंक्शन (अर्थात् z-दिशा के साथ) तक सीमित इलेक्ट्रॉनों को एक अतिरिक्त मॉडुलन क्षमता के अधीन किया जाए {{as written|''V''(''x'',''y'')}}. ऊपर वर्णित क्लासिकल सुपरलैटिस (1डी/3डी, जो कि 3डी बल्क में इलेक्ट्रॉनों का 1डी मॉडुलन है) के विपरीत, यह आमतौर पर हेटरोस्ट्रक्चर सतह का इलाज करके प्राप्त किया जाता है: एक उपयुक्त पैटर्न वाले धातु गेट या नक़्क़ाशी को जमा करना। यदि V(x,y) का आयाम बड़ा है ({{as written|take <math>V(x,y)=-V_0(\cos 2\pi x/a+\cos 2\pi y/a), V_0>0</math>}} उदाहरण के तौर पर) फर्मी स्तर की तुलना में, <math>|V_0|\gg E_f</math>, सुपरलैटिस में इलेक्ट्रॉनों को एक परमाणु क्रिस्टल में वर्ग जाली के साथ इलेक्ट्रॉनों के समान व्यवहार करना चाहिए (उदाहरण में, ये परमाणु पदों पर स्थित होंगे ({{as written|''na'',''ma''}}) जहां n,m पूर्णांक हैं)।
द्वि-आयामी इलेक्ट्रॉन गैसों ([[2DEG]]) के प्रयोगों के लिए सामान्य रूप से उपलब्ध होने के तुरंत बाद, अनुसंधान समूहों ने संरचनाएं बनाने का प्रयास किया<ref>{{Cite journal | last1 = Heitmann | first1 = D. | last2 = Kotthaus | first2 = J. R. P. | doi = 10.1063/1.881355 | title = क्वांटम डॉट एरे की स्पेक्ट्रोस्कोपी| journal = Physics Today | volume = 46 | issue = 6 | pages = 56 | year = 1993 | bibcode = 1993PhT....46f..56H }}</ref> जिसे 2D कृत्रिम क्रिस्टल कहा जा सकता है। विचार यह है कि हेटेरोजंक्शन (अर्थात् z-दिशा के साथ) तक सीमित इलेक्ट्रॉनों को एक अतिरिक्त मॉडुलन क्षमता के अधीन किया जाए {{as written|''V''(''x'',''y'')}}. ऊपर वर्णित क्लासिकल अति जालक (1डी/3डी, जो कि 3डी बल्क में इलेक्ट्रॉनों का 1डी मॉडुलन है) के विपरीत, यह सामान्यतः हेटरोस्ट्रक्चर सतह का इलाज करके प्राप्त किया जाता है: एक उपयुक्त प्रतिरूप वाले धातु गेट या नक़्क़ाशी को एकत्रित करना। यदि V(x,y) का आयाम बड़ा है ({{as written|take <math>V(x,y)=-V_0(\cos 2\pi x/a+\cos 2\pi y/a), V_0>0</math>}} उदाहरण के तौर पर) फर्मी स्तर की तुलना में, <math>|V_0|\gg E_f</math>, अति जालक में इलेक्ट्रॉनों को एक परमाणु क्रिस्टल में वर्ग जाली के साथ इलेक्ट्रॉनों के समान व्यवहार करना चाहिए (उदाहरण में, ये परमाणु पदों पर स्थित होंगे ({{as written|''na'',''ma''}}) जहां n,m पूर्णांक हैं)।


अंतर लंबाई और ऊर्जा के पैमाने में है। परमाणु क्रिस्टल के जाली स्थिरांक 1Å के क्रम के होते हैं, जबकि सुपरलैटिस (ए) कई सैकड़ों या हजारों बड़े होते हैं, जो तकनीकी सीमाओं (जैसे इलेक्ट्रॉन-बीम लिथोग्राफी का उपयोग हेटरोस्ट्रक्चर सतह के पैटर्निंग के लिए किया जाता है) द्वारा निर्धारित किया जाता है। सुपरलैटिस में ऊर्जा समान रूप से छोटी होती है। एक बॉक्स में सरल क्वांटम-यंत्रवत् कण का उपयोग | सीमित-कण मॉडल सुझाता है <math>E\propto 1/a^2</math>. यह संबंध वर्तमान में सामयिक ग्राफीन (एक प्राकृतिक परमाणु क्रिस्टल) और कृत्रिम ग्राफीन के साथ केवल एक मोटा मार्गदर्शक और वास्तविक गणना है<ref>{{Cite journal | last1 = Kato | first1 = Y. | last2 = Endo | first2 = A. | last3 = Katsumoto | first3 = S. | last4 = Iye | first4 = Y. | title = हेक्सागोनल लेटरल सुपरलैटिस के मैग्नेटोरेसिस्टेंस में ज्यामितीय अनुनाद| doi = 10.1103/PhysRevB.86.235315 | journal = Physical Review B | volume = 86 | issue = 23 | pages = 235315 | year = 2012 |arxiv = 1208.4480 |bibcode = 2012PhRvB..86w5315K | s2cid = 119289481 }}</ref> (सुपरलैटिस) से पता चलता है कि चारित्रिक बैंड की चौड़ाई क्रमशः 1 eV और 10 meV के क्रम की होती है। कमजोर मॉडुलन के शासन में (<math>|V_0|\ll E_f</math>), अनुरूपता दोलनों या फ्रैक्टल एनर्जी स्पेक्ट्रा (हॉफस्टैटर की तितली) जैसी घटनाएँ घटित होती हैं।
अंतर लंबाई और ऊर्जा के पैमाने में है। परमाणु क्रिस्टल के जाली स्थिरांक 1Å के क्रम के होते हैं, जबकि अति जालक (ए) कई सैकड़ों या हजारों बड़े होते हैं, जो तकनीकी सीमाओं (जैसे इलेक्ट्रॉन-बीम लिथोग्राफी का उपयोग हेटरोस्ट्रक्चर सतह के प्रतिरूपिंग के लिए किया जाता है) द्वारा निर्धारित किया जाता है। अति जालक में ऊर्जा समान रूप से छोटी होती है। एक बॉक्स में सरल क्वांटम-यंत्रवत् कण का उपयोग | सीमित-कण मॉडल सुझाता है <math>E\propto 1/a^2</math>. यह संबंध वर्तमान में सामयिक ग्राफीन (एक प्राकृतिक परमाणु क्रिस्टल) और कृत्रिम ग्राफीन के साथ केवल एक मोटा मार्गदर्शक और वास्तविक गणना है<ref>{{Cite journal | last1 = Kato | first1 = Y. | last2 = Endo | first2 = A. | last3 = Katsumoto | first3 = S. | last4 = Iye | first4 = Y. | title = हेक्सागोनल लेटरल सुपरलैटिस के मैग्नेटोरेसिस्टेंस में ज्यामितीय अनुनाद| doi = 10.1103/PhysRevB.86.235315 | journal = Physical Review B | volume = 86 | issue = 23 | pages = 235315 | year = 2012 |arxiv = 1208.4480 |bibcode = 2012PhRvB..86w5315K | s2cid = 119289481 }}</ref> (अति जालक) से पता चलता है कि चारित्रिक बैंड की चौड़ाई क्रमशः 1 eV और 10 meV के क्रम की होती है। कमजोर मॉडुलन के शासन में (<math>|V_0|\ll E_f</math>), अनुरूपता दोलनों या फ्रैक्टल एनर्जी स्पेक्ट्रा (हॉफस्टैटर की तितली) जैसी घटनाएँ घटित होती हैं।


कृत्रिम द्वि-आयामी क्रिस्टल को 2डी/2डी केस (2डी प्रणाली के 2डी मॉडुलन) के रूप में देखा जा सकता है और अन्य संयोजन प्रयोगात्मक रूप से उपलब्ध हैं: क्वांटम तारों की एक सरणी (1डी/2डी) या 3डी/3डी [[फोटोनिक क्रिस्टल]]।
कृत्रिम द्वि-आयामी क्रिस्टल को 2डी/2डी केस (2डी प्रणाली के 2डी मॉडुलन) के रूप में देखा जा सकता है और अन्य संयोजन प्रयोगात्मक रूप से उपलब्ध हैं: क्वांटम तारों की एक सरणी (1डी/2डी) या 3डी/3डी [[फोटोनिक क्रिस्टल]]।


== अनुप्रयोग ==
== अनुप्रयोग ==
उच्च विद्युत चालकता को सक्षम करने के लिए पैलेडियम-कॉपर सिस्टम के सुपरलैटिस का उपयोग उच्च प्रदर्शन मिश्र धातुओं में किया जाता है, जो कि आदेशित संरचना के पक्ष में है। बेहतर यांत्रिक शक्ति और उच्च तापमान स्थिरता के लिए आगे मिश्र धातु तत्व जैसे चांदी, [[ रेनीयाम ]], [[ रोडियाम ]] और [[दयाता]] जोड़े जाते हैं। [[जांच कार्ड]] में जांच सुई के लिए इस मिश्र धातु का उपयोग किया जाता है।<ref>{{cite web |title=United States Patent US10385424B2 Palladium-based alloys |url=https://patentimages.storage.googleapis.com/83/53/a1/ecb99f439b0d61/US10385424.pdf |website=google patents |access-date=19 June 2020}}</ref>
उच्च विद्युत चालकता को सक्षम करने के लिए पैलेडियम-कॉपर प्रणाली के अति जालक का उपयोग उच्च प्रदर्शन मिश्र धातुओं में किया जाता है, जो कि क्रमित संरचना के पक्ष में है। बेहतर यांत्रिक शक्ति और उच्च तापमान स्थिरता के लिए आगे मिश्र धातु तत्व जैसे चांदी, [[ रेनीयाम |रेनीयाम]] , [[ रोडियाम |रोडियाम]] और [[दयाता]] जोड़े जाते हैं। [[जांच कार्ड]] में जांच सुई के लिए इस मिश्र धातु का उपयोग किया जाता है।<ref>{{cite web |title=United States Patent US10385424B2 Palladium-based alloys |url=https://patentimages.storage.googleapis.com/83/53/a1/ecb99f439b0d61/US10385424.pdf |website=google patents |access-date=19 June 2020}}</ref>




== यह भी देखें ==
== यह भी देखें ==
* [[III-V सेमीकंडक्टर में Cu-Pt टाइप ऑर्डरिंग]]
* [[III-V सेमीकंडक्टर में Cu-Pt टाइप ऑर्डरिंग|III-V अर्धचालक में Cu-Pt टाइप ऑर्डरिंग]]
* [[ट्यूब-आधारित नैनोस्ट्रक्चर]]
* [[ट्यूब-आधारित नैनोस्ट्रक्चर]]
* [[ वानियर समारोह ]]
* [[ वानियर समारोह ]]

Revision as of 00:03, 14 June 2023

एक अति जालक दो (या अधिक) पदार्थों की परतों की आवधिक संरचना है। सामान्यतः, एक परत की मोटाई कई नैनोमीटर होती है। यह निम्न-आयामी संरचना को भी संदर्भित कर सकता है जैसे क्वांटम बिन्दु या क्वांटम कूप की एक सरणी।

खोज

सोना - ताँबा और पैलेडियम-तांबा प्रणालियों पर उनके विशेष एक्स-किरणें विवर्तन प्रतिरूप के अध्ययन के बाद जोहानसन और लिंडे द्वारा 1925 के प्रारम्भ में अति जालक की खोज की गई थी।[1] क्षेत्र पर आगे के प्रायोगिक अवलोकन और सैद्धांतिक संशोधन ब्रैडली और जे[2] गोर्स्की,[3] बोरेलियस,[4] देहलिंगर और ग्राफ,[5] ब्रैग और विलियम्स[6] और बेथे द्वारा किए गए थे।[7] सिद्धांत अव्यवस्थित अवस्था से एक क्रमित अवस्था में क्रिस्टल जालक में परमाणुओं की व्यवस्था के संक्रमण पर आधारित थे।

यांत्रिक गुण

जे.एस. कोहलर ने सैद्धांतिक रूप से भविष्यवाणी की थी[8] कि उच्च और निम्न प्रत्यास्थ स्थिरांक वाले पदार्थों की वैकल्पिक (नैनो-) परतों का उपयोग करके, अपरूपक प्रतिरोध को 100 गुना तक सुधारा जाता है क्योंकि फ्रैंक-रीड स्रोत अव्यवस्था का स्रोत नैनो परतों में काम नहीं कर सकता है।

इस प्रकार की अति जालक पदार्थ की बढ़ी हुई यांत्रिक दृढ़ता की पुष्टि सबसे पहले 1978 में Al-Cu और Al-Ag पर लेहोक्ज़की द्वारा की गई थी,[9] और बाद में कई अन्य लोगों द्वारा की गई,[10] जैसे कि दृढ़ पीवीडी लेपन पर बार्नेट और स्पोर्ल।

अर्धचालक गुण

यदि अति जालक अलग-अलग ऊर्जा अंतराल के साथ दो अर्धचालक पदार्थों से बना है, तो प्रत्येक क्वांटम ठीक रूप से नवीन चयन नियम स्थापित करता है जो संरचना के माध्यम से आवेशों के प्रवाह की स्थितियों को प्रभावित करते हैं। विकास की दिशा में आवधिक संरचना बनाने के लिए दो अलग-अलग अर्धचालक पदार्थ एक-दूसरे पर वैकल्पिक रूप से एकत्रित की जाती हैं। लियो इसकी और राफेल त्सू द्वारा कृत्रिम अति जालक के 1970 के प्रस्ताव के बाद से,[11] ऐसे अति सूक्ष्म अर्धचालकों की भौतिकी में प्रगति हुई है, जिन्हें वर्तमान में क्वांटम संरचनाएं कहा जाता है। क्वांटम परिरोधन की अवधारणा ने पृथक क्वांटम अनुकूल विषम संरचना में क्वांटम आकार के प्रभावों का अवलोकन किया है और सुरंगन घटना के माध्यम से अति जालक से निकटता से संबंधित है। इसलिए, इन दो विचारों पर प्रायः एक ही भौतिक आधार पर चर्चा की जाती है, परन्तु प्रत्येक में अलग-अलग भौतिकी होती है जो विद्युत और प्रकाशिक उपकरणों में अनुप्रयोगों के लिए उपयोगी होती है।

अर्धचालक अति जालक प्रकार

अति जालक मिनीबैंड संरचनाएं heterojunction प्रकार पर निर्भर करती हैं, या तो टाइप I, टाइप II या टाइप III। टाइप I के लिए चालन बैंड के नीचे और वैलेंस सबबैंड के शीर्ष एक ही अर्धचालक परत में बनते हैं। टाइप II में चालन और वैलेंस सबबैंड वास्तविक और पारस्परिक दोनों जगहों में कंपित होते हैं, ताकि इलेक्ट्रॉनों और छिद्रों को अलग-अलग परतों में सीमित किया जा सके। टाइप III अति जालक में अर्द्ध धातु पदार्थ शामिल होती है, जैसे एचजीटीई / सीडीटीई। हालाँकि कंडक्शन सबबैंड के नीचे और वैलेंस सबबैंड के शीर्ष टाइप III अति जालक में एक ही अर्धचालक परत में बनते हैं, जो टाइप I अति जालक के समान है, टाइप III अति जालक के बैंड गैप को अर्धचालक से शून्य बैंड तक लगातार समायोजित किया जा सकता है। गैप पदार्थ और नेगेटिव बैंड गैप के साथ सेमीमेटल।

क्वासिपरियोडिक अति जालक के एक अन्य वर्ग का नाम फिबोनाची अनुक्रम नाम पर रखा गया है। एक फाइबोनैचि अति जालक को एक आयामी quasicrystal के रूप में देखा जा सकता है, जहां या तो इलेक्ट्रॉन होपिंग ट्रांसफर या ऑन-साइट ऊर्जा फाइबोनैचि अनुक्रम में व्यवस्थित दो मान लेती है।

अर्धचालक पदार्थ

GaAs/AlAs अति जालक और विकास दिशा (z) के साथ चालन और वैलेंस बैंड की संभावित प्रोफ़ाइल।

अर्धचालक पदार्थ, जो अति जालक संरचनाओं को बनाने के लिए उपयोग की जाती है, को तत्व समूहों, IV, III-V और II-VI द्वारा विभाजित किया जा सकता है। जबकि समूह III-V अर्धचालक (विशेष रूप से GaAs/Alxयहाँ1−xAs) का बड़े पैमाने पर अध्ययन किया गया है, जैसे कि Sixजीई1−x बड़ी जाली बेमेल के कारण प्रणाली को महसूस करना अधिक कठिन होता है। फिर भी, इन क्वांटम संरचनाओं में सबबैंड संरचनाओं का तनाव संशोधन दिलचस्प है और इसने बहुत ध्यान आकर्षित किया है।

GaAs/AlAs प्रणाली में GaAs और AlAs के बीच जाली स्थिरांक में अंतर और उनके थर्मल विस्तार गुणांक का अंतर दोनों ही छोटे हैं। इस प्रकार, एपिटैक्सियल ग्रोथ तापमान से ठंडा होने के बाद कमरे के तापमान पर शेष तनाव को कम किया जा सकता है। GaAs/Al का उपयोग करके पहली रचनात्मक अति जालक का एहसास हुआxयहाँ1−xपदार्थ प्रणाली के रूप में।

एक बार जब दो क्रिस्टल संरेखित हो जाते हैं तो एक ग्राफीन/बोरॉन नाइट्राइड प्रणाली एक अर्धचालक अति जालक बनाता है। इसके आवेश वाहक कम ऊर्जा अपव्यय के साथ विद्युत क्षेत्र के लंबवत गति करते हैं। एच-बीएन में ग्राफीन के समान एक हेक्सागोनल संरचना है। अति जालक ने उलटा समरूपता तोड़ दी है। स्थानीय रूप से, टोपोलॉजिकल धाराएं लागू वर्तमान की तुलना में तुलनीय हैं, जो बड़े घाटी-हॉल कोणों को दर्शाती हैं।[12]


उत्पादन

विभिन्न तकनीकों का उपयोग करके अति जालक का उत्पादन किया जा सकता है, परन्तु आणविक-बीम एपिटॉक्सी (एमबीई) और स्पटरिंग सबसे आम हैं। इन विधियों से, परतों को केवल कुछ परमाणु रिक्ति की मोटाई के साथ बनाया जा सकता है। अति जालक निर्दिष्ट करने का एक उदाहरण है [Fe
20
V
30
]20. यह 20Å आयरन (Fe) और 30Å वैनेडियम (V) की एक द्वि-परत को 20 बार दोहराता है, इस प्रकार 1000Å या 100 एनवीनम की कुल मोटाई प्राप्त करता है। अर्धचालक अति जालक बनाने के साधन के रूप में एमबीई तकनीक का प्राथमिक महत्व है। MBE प्रौद्योगिकी के अलावा, धातु कार्बनिक रासायनिक वाष्प जमाव | धातु-कार्बनिक रासायनिक वाष्प जमाव (MO-CVD) ने अतिसंवाहक अति जालक के विकास में योगदान दिया है, जो कि InGaAsP मिश्र धातुओं जैसे चतुर्धातुक III-V यौगिक अर्धचालकों से बना है। नई तकनीकों में अल्ट्राहाई वैक्यूम (यूएचवी) प्रौद्योगिकियों के साथ गैस स्रोत से निपटने का एक संयोजन शामिल है जैसे धातु-कार्बनिक अणु स्रोत पदार्थ के रूप में और गैस-स्रोत एमबीई हाइब्रिड गैसों जैसे कि आर्सिन (AsH
3
) और फॉस्फीन (PH
3
) विकसित किया गया है।

आम तौर पर बोलना एमबीई बाइनरी प्रणाली में तीन तापमानों का उपयोग करने की एक विधि है, उदाहरण के लिए, सब्सट्रेट तापमान, समूह III के स्रोत पदार्थ तापमान और III-V यौगिकों के मामले में समूह V तत्व।

उत्पादित अति जालक की संरचनात्मक गुणवत्ता को एक्स-किरणें विवर्तन या न्यूट्रॉन विवर्तन स्पेक्ट्रा के माध्यम से सत्यापित किया जा सकता है जिसमें विशिष्ट उपग्रह शिखर होते हैं। अल्टरनेटिंग लेयरिंग से जुड़े अन्य प्रभाव हैं: विशाल चुंबकत्व, एक्स-किरणें और न्यूट्रॉन दर्पणों के लिए ट्यून करने योग्य परावर्तकता, न्यूट्रॉन स्पिन ध्रुवीकरण, और प्रत्यास्थ और ध्वनिक गुणों में परिवर्तन। इसके घटकों की प्रकृति के आधार पर, एक अति जालक को चुंबकीय, प्रकाशिक या सेमीकंडक्टिंग कहा जा सकता है।

एक्स-किरणें और न्यूट्रॉन प्रकीर्णन [Fe20V30]20 अति जालक।

मिनीबैंड संरचना

एक आवधिक अति जालक की योजनाबद्ध संरचना नीचे दिखाई गई है, जहां ए और बी संबंधित परत मोटाई ए और बी (अवधि:) के दो अर्धचालक पदार्थ हैं। ). जब ए और बी इंटरटॉमिक स्पेसिंग की तुलना में बहुत छोटे नहीं होते हैं, तो मूल बल्क अर्धचालक्स की बैंड संरचना से प्राप्त एक प्रभावी क्षमता द्वारा इन तेजी से बदलती क्षमता को बदलकर एक पर्याप्त सन्निकटन प्राप्त किया जाता है। व्यक्तिगत परतों में से प्रत्येक में 1D श्रोडिंगर समीकरणों को हल करना सीधा है, जिनके समाधान वास्तविक या काल्पनिक घातांकों के रैखिक संयोजन हैं।

एक बड़ी बाधा मोटाई के लिए, सुरंग रहित फैलाव रहित अवस्थाओं के संबंध में सुरंग बनाना एक कमजोर गड़बड़ी है, जो पूर्ण रूप से सीमित हैं। इस मामले में फैलाव संबंध , आवधिक खत्म इससे अधिक बलोच प्रमेय के आधार पर, पूर्ण रूप से ज्यावक्रीय है:

और प्रभावी सामूहिक परिवर्तन के लिए संकेत :

मिनीबैंड के मामले में, यह साइनसोइडल कैरेक्टर अब संरक्षित नहीं है। मिनीबैंड में केवल उच्च ऊपर (वेववेक्टरों के लिए ठीक रूप से परे ) शीर्ष वास्तव में 'संवेदी' है और प्रभावी द्रव्यमान परिवर्तन संकेत करता है। मिनीबैंड फैलाव का आकार मिनीबैंड परिवहन को गहराई से प्रभावित करता है और विस्तृत मिनीबैंड दिए जाने पर सटीक फैलाव संबंध गणना की आवश्यकता होती है। एकल मिनीबैंड परिवहन को देखने की शर्त किसी भी प्रक्रिया द्वारा इंटरमिनिबैंड ट्रांसफर की अनुपस्थिति है। तापीय क्वांटम kBटी ऊर्जा अंतर से बहुत छोटा होना चाहिए लागू विद्युत क्षेत्र की उपस्थिति में भी पहले और दूसरे मिनीबैंड के बीच।

बलोच राज्य

एक आदर्श अति जालक के लिए समतल तरंगों के उत्पादों द्वारा खुद के राज्यों राज्यों का एक पूरा सेट बनाया जा सकता है और एक जेड-निर्भर फ़ंक्शन जो eigenvalue समीकरण को संतुष्ट करता है

.

जैसा और अति जालक अवधि डी के साथ आवधिक कार्य हैं, ईजेनस्टेट्स बलोच राज्य हैं ऊर्जा के साथ . कश्मीर में पहले क्रम गड़बड़ी सिद्धांत के भीतर2, व्यक्ति ऊर्जा प्राप्त करता है

.

अब, कुएँ में एक बड़ी संभावना प्रदर्शित करेगा, ताकि दूसरे पद को इसके द्वारा प्रतिस्थापित करना उचित प्रतीत हो

कहाँ क्वांटम वेल का प्रभावी द्रव्यमान है।

Wannier फ़ंक्शन

परिभाषा के अनुसार बलोच के प्रमेय को पूरे अति जालक पर निरूपित किया गया है। यदि विद्युत क्षेत्र लागू होते हैं या अति जालक की परिमित लंबाई के कारण प्रभाव पर विचार किया जाता है तो यह कठिनाइयाँ प्रदान कर सकता है। इसलिए, आधार राज्यों के विभिन्न सेटों का उपयोग करना प्रायः सहायक होता है जो बेहतर स्थानीयकृत होते हैं। एक आकर्षक विकल्प एकल क्वांटम कूप के आइजेनस्टेट्स का उपयोग होगा। फिर भी, इस प्रकार के विकल्प में गंभीर कमी है: संबंधित राज्य दो अलग-अलग हैमिल्टनियन (क्वांटम यांत्रिकी) के समाधान हैं, प्रत्येक दूसरे कुएं की उपस्थिति की उपेक्षा करते हैं। इस प्रकार ये अवस्थाएं ऑर्थोगोनल नहीं हैं, जिससे जटिलताएं पैदा होती हैं। सामान्यतः, युग्मन का अनुमान इस दृष्टिकोण के भीतर हैमिल्टनियन स्थानांतरण द्वारा लगाया जाता है। इन कारणों से, Wannier फ़ंक्शन के सेट का उपयोग करना अधिक सुविधाजनक होता है।

वानियर-स्टार्क सीढ़ी

विद्युत क्षेत्र F को अति जालक संरचना में लागू करने से हैमिल्टन को एक अतिरिक्त स्केलर क्षमता eφ(z) = -eFz प्रदर्शित करने का कारण बनता है जो ट्रांसलेशनल इनवेरियन को नष्ट कर देता है। इस मामले में, वेवफंक्शन के साथ एक ईजेनस्टेट दिया गया और ऊर्जा , फिर वेवफंक्शन के अनुरूप राज्यों का सेट ऊर्जा ई के साथ हैमिल्टनियन के स्वदेशी हैंj = और0 - जेफ। ये राज्य समान रूप से ऊर्जा और वास्तविक स्थान दोनों में हैं और तथाकथित वानियर-स्टार्क सीढ़ी बनाते हैं। सामर्थ अनंत क्रिस्टल के लिए बाध्य नहीं है, जिसका तात्पर्य निरंतर ऊर्जा स्पेक्ट्रम से है। फिर भी, इन वानियर-स्टार्क सीढ़ी के विशिष्ट ऊर्जा स्पेक्ट्रम को प्रयोगात्मक रूप से हल किया जा सकता है।

परिवहन

अति जालक परिवहन के लिए विभिन्न मानक दृष्टिकोणों का अवलोकन।

एक अति जालक में आवेश वाहकों की गति अलग-अलग परतों में भिन्न होती है: आवेश वाहकों की इलेक्ट्रॉन गतिशीलता को बढ़ाया जा सकता है, जो उच्च-आवृत्ति वाले उपकरणों के लिए फायदेमंद है, और लेज़रों में विशिष्ट प्रकाशिक गुणों का उपयोग किया जाता है।

यदि किसी धातु या अर्धचालक जैसे कंडक्टर पर बाहरी पूर्वाग्रह लागू होता है, तो सामान्यतः एक विद्युत प्रवाह उत्पन्न होता है। इस धारा का परिमाण पदार्थ की बैंड संरचना, बिखरने की प्रक्रिया, लागू क्षेत्र की ताकत और कंडक्टर के संतुलन वाहक वितरण द्वारा निर्धारित किया जाता है।

अति जालक नामक अति जालक का एक विशेष मामला स्पेसर्स द्वारा अलग किए गए अतिचालक इकाइयों से बना है। प्रत्येक मिनीबैंड में अतिचालक ऑर्डर पैरामीटर, जिसे अतिचालक गैप कहा जाता है, अलग-अलग मान लेता है, एक मल्टी-गैप, या टू-गैप या मल्टीबैंड अतिसंवाहकता पैदा करता है।

हाल ही में, फेलिक्स और परेरा ने समय-समय पर फ़ोनों द्वारा थर्मल परिवहन की जांच की[13] और क्वासिपरियोडिक[14][15][16] फाइबोनैचि अनुक्रम के अनुसार ग्राफीन-एचबीएन के अति जालक। उन्होंने बताया कि क्वासिपरियोडिसिटी बढ़ने के साथ सुसंगत थर्मल ट्रांसपोर्ट (फोनन लाइक-वेव) के योगदान को दबा दिया गया था।

अन्य आयाम

द्वि-आयामी इलेक्ट्रॉन गैसों (2DEG) के प्रयोगों के लिए सामान्य रूप से उपलब्ध होने के तुरंत बाद, अनुसंधान समूहों ने संरचनाएं बनाने का प्रयास किया[17] जिसे 2D कृत्रिम क्रिस्टल कहा जा सकता है। विचार यह है कि हेटेरोजंक्शन (अर्थात् z-दिशा के साथ) तक सीमित इलेक्ट्रॉनों को एक अतिरिक्त मॉडुलन क्षमता के अधीन किया जाए V(x,y). ऊपर वर्णित क्लासिकल अति जालक (1डी/3डी, जो कि 3डी बल्क में इलेक्ट्रॉनों का 1डी मॉडुलन है) के विपरीत, यह सामान्यतः हेटरोस्ट्रक्चर सतह का इलाज करके प्राप्त किया जाता है: एक उपयुक्त प्रतिरूप वाले धातु गेट या नक़्क़ाशी को एकत्रित करना। यदि V(x,y) का आयाम बड़ा है (take उदाहरण के तौर पर) फर्मी स्तर की तुलना में, , अति जालक में इलेक्ट्रॉनों को एक परमाणु क्रिस्टल में वर्ग जाली के साथ इलेक्ट्रॉनों के समान व्यवहार करना चाहिए (उदाहरण में, ये परमाणु पदों पर स्थित होंगे (na,ma) जहां n,m पूर्णांक हैं)।

अंतर लंबाई और ऊर्जा के पैमाने में है। परमाणु क्रिस्टल के जाली स्थिरांक 1Å के क्रम के होते हैं, जबकि अति जालक (ए) कई सैकड़ों या हजारों बड़े होते हैं, जो तकनीकी सीमाओं (जैसे इलेक्ट्रॉन-बीम लिथोग्राफी का उपयोग हेटरोस्ट्रक्चर सतह के प्रतिरूपिंग के लिए किया जाता है) द्वारा निर्धारित किया जाता है। अति जालक में ऊर्जा समान रूप से छोटी होती है। एक बॉक्स में सरल क्वांटम-यंत्रवत् कण का उपयोग | सीमित-कण मॉडल सुझाता है . यह संबंध वर्तमान में सामयिक ग्राफीन (एक प्राकृतिक परमाणु क्रिस्टल) और कृत्रिम ग्राफीन के साथ केवल एक मोटा मार्गदर्शक और वास्तविक गणना है[18] (अति जालक) से पता चलता है कि चारित्रिक बैंड की चौड़ाई क्रमशः 1 eV और 10 meV के क्रम की होती है। कमजोर मॉडुलन के शासन में (), अनुरूपता दोलनों या फ्रैक्टल एनर्जी स्पेक्ट्रा (हॉफस्टैटर की तितली) जैसी घटनाएँ घटित होती हैं।

कृत्रिम द्वि-आयामी क्रिस्टल को 2डी/2डी केस (2डी प्रणाली के 2डी मॉडुलन) के रूप में देखा जा सकता है और अन्य संयोजन प्रयोगात्मक रूप से उपलब्ध हैं: क्वांटम तारों की एक सरणी (1डी/2डी) या 3डी/3डी फोटोनिक क्रिस्टल

अनुप्रयोग

उच्च विद्युत चालकता को सक्षम करने के लिए पैलेडियम-कॉपर प्रणाली के अति जालक का उपयोग उच्च प्रदर्शन मिश्र धातुओं में किया जाता है, जो कि क्रमित संरचना के पक्ष में है। बेहतर यांत्रिक शक्ति और उच्च तापमान स्थिरता के लिए आगे मिश्र धातु तत्व जैसे चांदी, रेनीयाम , रोडियाम और दयाता जोड़े जाते हैं। जांच कार्ड में जांच सुई के लिए इस मिश्र धातु का उपयोग किया जाता है।[19]


यह भी देखें

संदर्भ

  1. Johansson; Linde (1925). "मिश्रित-क्रिस्टल श्रृंखला गोल्ड-कॉपर और पैलेडियम-कॉपर में परमाणु व्यवस्था का एक्स-रे निर्धारण". Annalen der Physik. 78 (21): 439. Bibcode:1925AnP...383..439J. doi:10.1002/andp.19253832104.
  2. Bradley; Jay (1932). "लोहा और एल्युमीनियम मिश्र धातुओं में सुपरलैटिस का निर्माण". Proc. R. Soc. A. 136 (829): 210–232. Bibcode:1932RSPSA.136..210B. doi:10.1098/rspa.1932.0075.
  3. Gorsky (1928). "CuAu मिश्र धातु में परिवर्तन की एक्स-रे जांच". Z. Phys. 50 (1–2): 64–81. Bibcode:1928ZPhy...50...64G. doi:10.1007/BF01328593. S2CID 121876817.
  4. Borelius (1934). "धात्विक मिश्रित चरणों के परिवर्तन का सिद्धांत". Annalen der Physik. 20 (1): 57. Bibcode:1934AnP...412...57B. doi:10.1002/andp.19344120105.
  5. Dehlinger; Graf (1934). "ठोस धातु चरणों का परिवर्तन I. चतुष्कोणीय सोना-तांबा मिश्र धातु CuAu". Z. Phys. Chem. 26: 343. doi:10.1515/zpch-1934-2631. S2CID 99550940.
  6. Bragg, W.L.; Williams, E.J. (1934). "मिश्र धातु I में परमाणु व्यवस्था पर थर्मल आंदोलन का प्रभाव". Proc. R. Soc. A. 145 (855): 699–730. Bibcode:1934RSPSA.145..699B. doi:10.1098/rspa.1934.0132.
  7. Bethe (1935). "सुपरलैटिस का सांख्यिकीय सिद्धांत". Proc. R. Soc. A. 150 (871): 552–575. Bibcode:1935RSPSA.150..552B. doi:10.1098/rspa.1935.0122.
  8. Koehler, J. (1970). "एक मजबूत ठोस डिजाइन करने का प्रयास". Physical Review B. 2 (2): 547–551. Bibcode:1970PhRvB...2..547K. doi:10.1103/PhysRevB.2.547.
  9. Lehoczky, S. L. (1973). "पतली परत वाली धातु के लैमिनेट्स में विस्थापन पीढ़ी और गति की मंदता". Acta Metallurgica. 41 (26): 1814.
  10. Yashar, P.; Barnett, S. A.; Rechner, J.; Sproul, W. D. (1998). "Structure and mechanical properties of polycrystalline CrN/TiN superlattices". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. American Vacuum Society. 16 (5): 2913–2918. Bibcode:1998JVSTA..16.2913Y. doi:10.1116/1.581439. ISSN 0734-2101.
  11. Esaki, L.; Tsu, R. (1970). "सेमीकंडक्टर्स में सुपरलैटिस और नेगेटिव डिफरेंशियल कंडक्टिविटी". IBM Journal of Research and Development. 14: 61–65. doi:10.1147/rd.141.0061.
  12. Gorbachev, R. V.; Song, J. C. W.; Yu, G. L.; Kretinin, A. V.; Withers, F.; Cao, Y.; Mishchenko, A.; Grigorieva, I. V.; Novoselov, K. S.; Levitov, L. S.; Geim, A. K. (2014). "ग्राफीन सुपरलैटिस में सामयिक धाराओं का पता लगाना". Science. 346 (6208): 448–451. arXiv:1409.0113. Bibcode:2014Sci...346..448G. doi:10.1126/science.1254966. PMID 25342798. S2CID 2795431.
  13. Felix, Isaac M.; Pereira, Luiz Felipe C. (9 February 2018). "ग्राफीन-एचबीएन सुपरलैटिस रिबन की तापीय चालकता". Scientific Reports (in English). 8 (1): 2737. Bibcode:2018NatSR...8.2737F. doi:10.1038/s41598-018-20997-8. PMC 5807325. PMID 29426893.
  14. Felix, Isaac M.; Pereira, Luiz Felipe C. (30 April 2020). "क्वासिपरियोडिक ग्राफीन-एचबीएन सुपरलैटिस रिबन में सुसंगत थर्मल ट्रांसपोर्ट का दमन". Carbon (in English). 160: 335–341. arXiv:2001.03072. doi:10.1016/j.carbon.2019.12.090. S2CID 210116531.
  15. Felix, Isaac M.; Pereira, Luiz Felipe C. (1 May 2022). "Thermal conductivity of Thue–Morse and double-period quasiperiodic graphene-hBN superlattices". International Journal of Heat and Mass Transfer (in English). Elsevier. 186: 122464. doi:10.1016/j.ijheatmasstransfer.2021.122464. S2CID 245712349.
  16. Félix, Isaac de Macêdo (4 August 2020). "Condução de calor em nanofitas quase-periódicas de grafeno-hBN" (in português do Brasil).
  17. Heitmann, D.; Kotthaus, J. R. P. (1993). "क्वांटम डॉट एरे की स्पेक्ट्रोस्कोपी". Physics Today. 46 (6): 56. Bibcode:1993PhT....46f..56H. doi:10.1063/1.881355.
  18. Kato, Y.; Endo, A.; Katsumoto, S.; Iye, Y. (2012). "हेक्सागोनल लेटरल सुपरलैटिस के मैग्नेटोरेसिस्टेंस में ज्यामितीय अनुनाद". Physical Review B. 86 (23): 235315. arXiv:1208.4480. Bibcode:2012PhRvB..86w5315K. doi:10.1103/PhysRevB.86.235315. S2CID 119289481.
  19. "United States Patent US10385424B2 Palladium-based alloys" (PDF). google patents. Retrieved 19 June 2020.


अग्रिम पठन