उत्पारण सीमा चालकता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 4: Line 4:


== ज्यामितीय उत्पारण ==
== ज्यामितीय उत्पारण ==
एक धातु के मिश्रण का वर्णन करने के लिए हम बंधन छिद्रण के नमूने का उपयोग करते है।ka
एक धातु के मिश्रण का वर्णन करने के लिए हम बंधन छिद्रण के नमूने का उपयोग करते है।


एक नियमित, दो के बीच का बंधन या तो संभाव्यता अधिकृत किया जा सकता है <math> p </math> या संभाव्यता अधिकृत नहीं किया जा सकता है <math> 1-p </math> एक महत्वपूर्ण मूल्य उपस्थित है <math> p_c </math> संभावनाओं के लिए <math> p > p_c </math> अधिकृत वाले बंधनों का एक अनंत समूह बनता है। इस मान को <math> p_c </math> उत्पारण सीमा कहा जाता है। इस उत्पारण सीमा के क्षेत्र को दो महत्वपूर्ण घातांकों द्वारा वर्णित किया जा सकता है <math> \nu </math> और <math> \beta </math> ([[ परकोलेशन क्रिटिकल एक्सपोर्टर |उत्पारण आलोचनात्मक निर्यातक]] देखें)।
एक नियमित, दो के बीच का बंधन या तो संभाव्यता अधिकृत किया जा सकता है <math> p </math> या संभाव्यता अधिकृत नहीं किया जा सकता है <math> 1-p </math> एक महत्वपूर्ण मूल्य उपस्थित है <math> p_c </math> संभावनाओं के लिए <math> p > p_c </math> अधिकृत वाले बंधनों का एक अनंत समूह बनता है। इस मान को <math> p_c </math> उत्पारण सीमा कहा जाता है। इस उत्पारण सीमा के क्षेत्र को दो महत्वपूर्ण घातांकों द्वारा वर्णित किया जा सकता है <math> \nu </math> और <math> \beta </math> ([[ परकोलेशन क्रिटिकल एक्सपोर्टर |उत्पारण आलोचनात्मक निर्यातक]] देखे)।


इन महत्वपूर्ण घातांकों के साथ हमारे पास सहसंबंध की लंबाई है, <math> \xi </math>
इन महत्वपूर्ण घातांकों के साथ हमारे पास सहसंबंध की लंबाई है, <math> \xi </math>
Line 85: Line 85:
      
      
<math>R_{sn}\,=\,\frac{\pi}{2}\frac{\rho}{w\,t\,\sqrt{N_E}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,</math>
<math>R_{sn}\,=\,\frac{\pi}{2}\frac{\rho}{w\,t\,\sqrt{N_E}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,</math>
== यह भी देखें ==
== यह भी देखे ==
* [[ परकोलेशन सिद्धांत | उत्पारण सिद्धांत]]
* [[ परकोलेशन सिद्धांत | उत्पारण सिद्धांत]]



Revision as of 10:18, 14 June 2023

भौतिकी में उत्पारण सीमा चालकता, एक धातु के बीच का मिश्रण होता है। विद्युत प्रतिरोधकता और चालकता और स्थिरांक यदि धात्विक का अंश उत्पारण सीमा तक पहुँच जाता है तो इस मिश्रण का एक महत्वपूर्ण व्यवहार प्रदर्शित होता है।[1]

यह उत्पारण सीमा धातु की चालकता में एक सहज परिवर्तन दिखाता है। इस व्यवहार को दो महत्वपूर्ण घातांक "s" और "t" का उपयोग करके वर्णित किया जा सकता है, जो निरंतर अलग हो जाता है यदि सीमा को दोनों तरफ से संपर्क किया जाता है। विद्युतिए अवयव में आवृत्ति को सम्मलित करने के लिए, एक प्रतिरोधक संधारित्र नमूने (आर सी नमूना) का उपयोग किया जाता है।

ज्यामितीय उत्पारण

एक धातु के मिश्रण का वर्णन करने के लिए हम बंधन छिद्रण के नमूने का उपयोग करते है।

एक नियमित, दो के बीच का बंधन या तो संभाव्यता अधिकृत किया जा सकता है या संभाव्यता अधिकृत नहीं किया जा सकता है एक महत्वपूर्ण मूल्य उपस्थित है संभावनाओं के लिए अधिकृत वाले बंधनों का एक अनंत समूह बनता है। इस मान को उत्पारण सीमा कहा जाता है। इस उत्पारण सीमा के क्षेत्र को दो महत्वपूर्ण घातांकों द्वारा वर्णित किया जा सकता है और (उत्पारण आलोचनात्मक निर्यातक देखे)।

इन महत्वपूर्ण घातांकों के साथ हमारे पास सहसंबंध की लंबाई है,

और उत्पारण प्रायिकता है, P:

विद्युत उत्पारण

विद्युत उत्पारण के विवरण के लिए, हम अनुबंध उत्पारण नमूने के अधिकृत वाले अनुबंध की पहचान धातु के साथ करते है जिसमें चालकता होती है . और चालकता के साथ होते है गैर अधिकृत बंधनों से मेल खाता है। हम एक सुचालक विसंवाहक मिश्रण और एक सुपरसुचालक मिश्रण के निम्नलिखित दो प्रसिद्ध स्थितियों पर विचार करते है।

सुचालक विसंवाहक मिश्रण

सुचालक विसंवाहक मिश्रण के स्थिति में हमारे पास है . यह स्थिति व्यवहार का वर्णन करती है, यदि ऊपर से उत्पारण सीमा तक संपर्क किया जाता है:

के लिए

उत्पारण सीमा के नीचे हमारे पास कोई चालकता नहीं होती है। घातांक t विद्युत उत्पारण के लिए दो महत्वपूर्ण घातांकों में से एक होता है।

अतिचालक–चालक मिश्रण

सुपरसुचालक मिश्रण के दूसरे प्रसिद्ध स्थिति में हमारे पास है यह स्थिति उत्पारण सीमा के नीचे विवरण के लिए उपयोगी होते है:

के लिए

अब, उत्पारण सीमा के ऊपर अनंत सुपरसुचालक समूह के कारण चालकता अनंत हो जाती है, और हमें विद्युतिए उत्पारण के लिए दूसरा आलोचनात्मक निर्यातक भी मिलता है।

उत्पारण सीमा चालकता

उत्पारण सीमा के आसपास के क्षेत्र में, चालकता एक स्केलिंग रूप लेती है:[2]

साथ और

उत्पारण सीमा पर, चालकता मूल्य तक पहुँचती है:[1]

साथ

महत्वपूर्ण घातांकों के लिए मान

विभिन्न स्रोतों में 3 आयामों में महत्वपूर्ण घातांक s, t और u के लिए कुछ भिन्न मान उपस्थित है:

3 आयामों में महत्वपूर्ण घातांक के मान
एफ्रोस एट अल[1] क्लर्क एट अल[2] बर्गमैन एट अल[3]
t 1,60 1,90 2,00
s 1,00 0,73 0,76
u 0,62 0,72 0,72

स्थिरांक भी उत्पारण सीमा में एक महत्वपूर्ण व्यवहार दिखाता है। हमारे पास स्थिरांक के वास्तविक भाग के लिए है:[1]

आर सी नमूना

आरसी नमूने के भीतर, उत्पारण नमूने में बंधन चालकता के साथ शुद्ध प्रतिरोधों द्वारा दर्शाए जाते है अधिकृत वाले बंधनों के लिए और चालकता के साथ सही संधारित्र द्वारा (जहाँ कोणीय आवृत्ति का प्रतिनिधित्व करता है) गैर अधिकृत बंधनों के लिए होता है। अब स्केलिंग नियम रूप लेता है:[2]

इस स्केलिंग नियम में विशुद्ध रूप से काल्पनिक स्केलिंग चर और एक महत्वपूर्ण समय स्केल सम्मलित होता है

जो अलग हो जाता है अगर उत्पारण सीमा को ऊपर से और साथ ही नीचे से संपर्क किया जाता है।[2]

सघन संजाल के लिए चालकता

घने संजाल के लिए, उत्पारण की अवधारणा सीधे लागू नहीं होती है और संजाल के ज्यामितीय गुणों के संदर्भ में प्रभावी प्रतिरोध की गणना की जाती है।[4] यह मानते हुए कि किनारे की लंबाई << इलेक्ट्रोड और किनारों को समान रूप से वितरित किया जाता है, क्षमता को एक इलेक्ट्रोड से दूसरे में समान रूप से गिराने के लिए माना जा सकता है। ऐसे यादृच्छिक संजाल का प्रतिरोध () किनारे घनत्व के संदर्भ में लिखा जा सकता है (), प्रतिरोधकता (), चौड़ाई () और मोटाई () किनारों के रूप में है:

यह भी देखे

संदर्भ

  1. 1.0 1.1 1.2 1.3 Efros, A. L.; Shklovskii, B. I. (1976). "Critical Behaviour of Conductivity and Dielectric Constant near the Metal-Non-Metal Transition Threshold". Phys. Status Solidi B. 76 (2): 475–485. Bibcode:1976PSSBR..76..475E. doi:10.1002/pssb.2220760205.
  2. 2.0 2.1 2.2 2.3 Clerc, J. P.; Giraud, G.; Laugier, J. M.; Luck, J. M. (1990). "The electrical conductivity of binary disordered systems, percolation clusters, fractals and related models". Adv. Phys. 39 (3): 191–309. Bibcode:1990AdPhy..39..191C. doi:10.1080/00018739000101501.
  3. Bergman, D. J.; Stroud, D. (1992). "Physical Properties of Macroscopically Inhomogeneous Media". In H. Ehrenreich und D. Turnbull (ed.). Solid State Physics. Vol. 46. Academic Press inc. pp. 147–269. doi:10.1016/S0081-1947(08)60398-7. ISBN 9780126077469.
  4. Kumar, Ankush; Vidhyadhiraja, N. S.; Kulkarni, G. U . (2017). "नैनोवायर नेटवर्क के संचालन में वर्तमान वितरण". Journal of Applied Physics. 122 (4): 045101. Bibcode:2017JAP...122d5101K. doi:10.1063/1.4985792.