फ़ीचर (कंप्यूटर विज़न): Difference between revisions
mNo edit summary |
mNo edit summary |
||
Line 11: | Line 11: | ||
चूंकि फीचर्स का उपयोग बाद के कलन विधि के लिए शुरुआती बिंदु और मुख्य पुरातन के रूप में किया जाता है, इसलिए समग्र कलन विधि प्रायः इसके फीचर संसूचक जितना ही अच्छा होगा। परिणामस्वरूप, एक ही दृश्य के दो या दो से अधिक अलग-अलग छवियों में एक ही फ़ीचर का पता लगाया जाएगा या नहीं फीचर संसूचक के लिए वांछनीय गुण आवृत्ति योग्यता है। | चूंकि फीचर्स का उपयोग बाद के कलन विधि के लिए शुरुआती बिंदु और मुख्य पुरातन के रूप में किया जाता है, इसलिए समग्र कलन विधि प्रायः इसके फीचर संसूचक जितना ही अच्छा होगा। परिणामस्वरूप, एक ही दृश्य के दो या दो से अधिक अलग-अलग छवियों में एक ही फ़ीचर का पता लगाया जाएगा या नहीं फीचर संसूचक के लिए वांछनीय गुण आवृत्ति योग्यता है। | ||
फ़ीचर अनुसन्धान एक निम्न-स्तरीय इमेज प्रोसेसिंग ऑपरेशन है। जो की, यह सामान्यत: छवि पर पहले ऑपरेशन के रूप में किया जाता है, और यह देखने के लिए प्रत्येक [[पिक्सेल]] की जांच करता है कि उस पिक्सेल में कोई फ़ीचर मौजूद है या नहीं। यदि यह एक बड़े | फ़ीचर अनुसन्धान एक निम्न-स्तरीय इमेज प्रोसेसिंग ऑपरेशन है। जो की, यह सामान्यत: छवि पर पहले ऑपरेशन के रूप में किया जाता है, और यह देखने के लिए प्रत्येक [[पिक्सेल]] की जांच करता है कि उस पिक्सेल में कोई फ़ीचर मौजूद है या नहीं। यदि यह एक बड़े कलन विधि का हिस्सा है, तो कलन विधि सामान्यत केवल फीचर्स के क्षेत्र में छवि की जांच करेगा। फीचर अनुसन्धान के लिए एक अंतर्निहित पूर्व-आवश्यकता के रूप में, इनपुट इमेज को सामान्यत: पर [[स्केल स्पेस]] में [[ गौस्सियन धुंधलापन ]] कर्नेल द्वारा स्मूथ किया जाता है। स्केल-स्पेस प्रतिनिधित्व और एक या कई फीचर इमेज की गणना की जाती है, जिसे प्रायः स्थानीय[[ छवि व्युत्पन्न ]] ऑपरेशंस के संदर्भ में व्यक्त किया जाता है। . | ||
कभी-कभी, जब फीचर अनुसन्धान [[कम्प्यूटेशनल रूप से महंगा]] होता है और समय की कमी होती है, तो फीचर अनुसन्धान चरण को निर्देशित करने के लिए एक उच्च स्तरीय कलन विधि का उपयोग किया जा सकता है, ताकि छवि के केवल कुछ हिस्सों को फीचर्स के लिए खोजा जा सके। | कभी-कभी, जब फीचर अनुसन्धान [[कम्प्यूटेशनल रूप से महंगा]] होता है और समय की कमी होती है, तो फीचर अनुसन्धान चरण को निर्देशित करने के लिए एक उच्च स्तरीय कलन विधि का उपयोग किया जा सकता है, ताकि छवि के केवल कुछ हिस्सों को फीचर्स के लिए खोजा जा सके। | ||
Line 32: | Line 32: | ||
=== किनारों === | === किनारों === | ||
किनारे वे बिंदु होते हैं जहां दो छवि क्षेत्रों के बीच एक सीमा (या एक किनारा) होती है। सामान्य तौर पर, एक किनारा लगभग मनमाना आकार का हो सकता है, और इसमें जंक्शन | किनारे वे बिंदु होते हैं जहां दो छवि क्षेत्रों के बीच एक सीमा (या एक किनारा) होती है। सामान्य तौर पर, एक किनारा लगभग मनमाना आकार का हो सकता है, और इसमें जंक्शन सम्मिलित हो सकते हैं। व्यवहार में, किनारों को सामान्यत: पर छवि में बिंदुओं के सेट के रूप में परिभाषित किया जाता है, जिसमें एक मजबूत ढाल परिमाण होता है। इसके अलावा, कुछ सामान्य कलन विधि फिर एक किनारे का अधिक पूर्ण विवरण बनाने के लिए एक साथ उच्च ढाल वाले बिंदुओं को श्रृंखलाबद्ध करेंगे। ये कलन विधि सामान्यतः पर किनारे के गुणों पर कुछ बाधाएं डालते हैं, जैसे कि आकार, चिकनाई और ढाल मूल्य। | ||
स्थानीय रूप से, किनारों में एक आयामी संरचना होती है। | स्थानीय रूप से, किनारों में एक आयामी संरचना होती है। | ||
Line 44: | Line 44: | ||
ब्लॉब्स क्षेत्रों के संदर्भ में छवि संरचनाओं का एक पूरक विवरण प्रदान करते हैं, जो कोनों के विपरीत अधिक बिंदु-समान होते हैं। फिर भी, ब्लॉब डिस्क्रिप्टर में प्रायः एक पसंदीदा बिंदु (ऑपरेटर प्रतिक्रिया का एक स्थानीय अधिकतम या गुरुत्वाकर्षण का केंद्र) हो सकता है, जिसका अर्थ है कि कई ब्लॉब संसूचकों को रुचि बिंदु ऑपरेटर के रूप में भी माना जा सकता है। बूँद संसूचक एक छवि में उन क्षेत्रों का पता लगा सकते हैं जो एक कोने वाले संसूचक द्वारा पहचाने जाने के लिए बहुत चिकने हैं। | ब्लॉब्स क्षेत्रों के संदर्भ में छवि संरचनाओं का एक पूरक विवरण प्रदान करते हैं, जो कोनों के विपरीत अधिक बिंदु-समान होते हैं। फिर भी, ब्लॉब डिस्क्रिप्टर में प्रायः एक पसंदीदा बिंदु (ऑपरेटर प्रतिक्रिया का एक स्थानीय अधिकतम या गुरुत्वाकर्षण का केंद्र) हो सकता है, जिसका अर्थ है कि कई ब्लॉब संसूचकों को रुचि बिंदु ऑपरेटर के रूप में भी माना जा सकता है। बूँद संसूचक एक छवि में उन क्षेत्रों का पता लगा सकते हैं जो एक कोने वाले संसूचक द्वारा पहचाने जाने के लिए बहुत चिकने हैं। | ||
एक छवि को सिकोड़ने और फिर कोने का पता लगाने पर विचार करें। संसूचक उन बिंदुओं पर प्रतिक्रिया देगा जो सिकुड़ी हुई छवि में तेज हैं, लेकिन मूल छवि में चिकने हो सकते हैं। यह इस बिंदु पर है कि कोने संसूचक और बूँद संसूचक के बीच का अंतर कुछ अस्पष्ट हो जाता है। काफी हद तक, पैमाने की उपयुक्त धारणा को | एक छवि को सिकोड़ने और फिर कोने का पता लगाने पर विचार करें। संसूचक उन बिंदुओं पर प्रतिक्रिया देगा जो सिकुड़ी हुई छवि में तेज हैं, लेकिन मूल छवि में चिकने हो सकते हैं। यह इस बिंदु पर है कि कोने संसूचक और बूँद संसूचक के बीच का अंतर कुछ अस्पष्ट हो जाता है। काफी हद तक, पैमाने की उपयुक्त धारणा को सम्मिलित करके इस अंतर को दूर किया जा सकता है। फिर भी, विभिन्न पैमानों पर विभिन्न प्रकार की छवि संरचनाओं के लिए उनकी प्रतिक्रिया गुणों के कारण, [[ कोने का पता लगाना ]] पर लेख में LoG और DoH [[ बूँद का पता लगाना ]] का भी उल्लेख किया गया है। | ||
=== लकीरें === | === लकीरें === | ||
Line 51: | Line 51: | ||
== पता लगाना {{anchor|Detectors}} == | == पता लगाना {{anchor|Detectors}} == | ||
[[File:Writing Desk with Harris Detector.png|thumb]]फ़ीचर अनुसन्धान में छवि जानकारी के सार की गणना करने और प्रत्येक छवि बिंदु पर स्थानीय निर्णय लेने के तरीके | [[File:Writing Desk with Harris Detector.png|thumb]]फ़ीचर अनुसन्धान में छवि जानकारी के सार की गणना करने और प्रत्येक छवि बिंदु पर स्थानीय निर्णय लेने के तरीके सम्मिलित हैं, चाहे उस बिंदु पर किसी दिए गए प्रकार की छवि फ़ीचर हो या नहीं। परिणामी फीचर्स छवि डोमेन के सबसेट होंगे, प्रायः अलग-अलग बिंदुओं, निरंतर घटता या जुड़े क्षेत्रों के रूप में। | ||
फीचर्स का निष्कर्षण कभी-कभी कई स्केलिंग पर किया जाता है। इनमें से एक तरीका [[स्केल-इनवेरिएंट फीचर ट्रांसफॉर्म]] (SIFT) है। | फीचर्स का निष्कर्षण कभी-कभी कई स्केलिंग पर किया जाता है। इनमें से एक तरीका [[स्केल-इनवेरिएंट फीचर ट्रांसफॉर्म]] (SIFT) है। | ||
Line 234: | Line 234: | ||
{{broader|Feature extraction (machine learning)}} | {{broader|Feature extraction (machine learning)}} | ||
एक बार फीचर्स का पता चलने के बाद, फ़ीचर के आसपास एक स्थानीय छवि पैच निकाला जा सकता है। इस निष्कर्षण में काफी मात्रा में इमेज प्रोसेसिंग | एक बार फीचर्स का पता चलने के बाद, फ़ीचर के आसपास एक स्थानीय छवि पैच निकाला जा सकता है। इस निष्कर्षण में काफी मात्रा में इमेज प्रोसेसिंग सम्मिलित हो सकती है। परिणाम को फीचर डिस्क्रिप्टर या फीचर वेक्टर के रूप में जाना जाता है। वर्णन करने के लिए उपयोग किए जाने वाले दृष्टिकोणों में, एन-जेट | एन-जेट और स्थानीय हिस्टोग्राम का उल्लेख किया जा सकता है (स्थानीय हिस्टोग्राम डिस्क्रिप्टर के एक उदाहरण के लिए स्केल-इनवेरिएंट फीचर ट्रांसफ़ॉर्म देखें)। इस तरह की फ़ीचर जानकारी के अलावा, फीचर अनुसन्धान स्टेप अपने आप में पूरक फ़ीचरएँ भी प्रदान कर सकता है, जैसे कि एज ओरिएंटेशन और एज अनुसन्धान में ग्रेडिएंट परिमाण और ब्लॉब अनुसन्धान में पोलरिटी और ब्लॉब की ताकत। | ||
===निम्न स्तर=== | ===निम्न स्तर=== | ||
Line 273: | Line 273: | ||
=== [[निश्चितता]] या विश्वास === | === [[निश्चितता]] या विश्वास === | ||
छवि फीचर्स के दो उदाहरण एक छवि अनुक्रम में स्थानीय बढ़त ओरिएंटेशन और स्थानीय वेग हैं। अभिविन्यास के मामले में, इस फ़ीचर का मान अधिक या कम अपरिभाषित हो सकता है यदि संबंधित प्रतिवेश में एक से अधिक किनारे मौजूद हों। स्थानीय वेग अपरिभाषित है यदि संबंधित छवि क्षेत्र में कोई स्थानिक भिन्नता नहीं है। इस अवलोकन के परिणामस्वरूप, फीचर प्रतिनिधित्व का उपयोग करना प्रासंगिक हो सकता है जिसमें फीचर वैल्यू के विषय में बयान से संबंधित निश्चितता या विश्वास का एक उपाय | छवि फीचर्स के दो उदाहरण एक छवि अनुक्रम में स्थानीय बढ़त ओरिएंटेशन और स्थानीय वेग हैं। अभिविन्यास के मामले में, इस फ़ीचर का मान अधिक या कम अपरिभाषित हो सकता है यदि संबंधित प्रतिवेश में एक से अधिक किनारे मौजूद हों। स्थानीय वेग अपरिभाषित है यदि संबंधित छवि क्षेत्र में कोई स्थानिक भिन्नता नहीं है। इस अवलोकन के परिणामस्वरूप, फीचर प्रतिनिधित्व का उपयोग करना प्रासंगिक हो सकता है जिसमें फीचर वैल्यू के विषय में बयान से संबंधित निश्चितता या विश्वास का एक उपाय सम्मिलित है। अन्यथा, यह एक विशिष्ट स्थिति है कि एक ही विवरणक का उपयोग इस वर्णनकर्ता की व्याख्या में परिणामी अस्पष्टता के साथ, कम निश्चितता के फीचर मूल्यों और शून्य के करीब फ़ीचर मूल्यों का प्रतिनिधित्व करने के लिए किया जाता है। आवेदन के आधार पर, ऐसी अस्पष्टता स्वीकार्य हो भी सकती है और नहीं भी। | ||
विशेष रूप से, यदि एक चित्रित छवि का उपयोग बाद के प्रसंस्करण में किया जाएगा, तो निश्चितता या विश्वास के विषय में जानकारी | विशेष रूप से, यदि एक चित्रित छवि का उपयोग बाद के प्रसंस्करण में किया जाएगा, तो निश्चितता या विश्वास के विषय में जानकारी सम्मिलित करने वाले फीचर प्रतिनिधित्व को नियोजित करना एक अच्छा विचार हो सकता है। यह एक नए फीचर डिस्क्रिप्टर को कई डिस्क्रिप्टर से गणना करने में सक्षम बनाता है, उदाहरण के लिए एक ही छवि बिंदु पर गणना की जाती है, लेकिन अलग-अलग पैमानों पर, या अलग-अलग लेकिन प्रतिवेशी बिंदुओं से, भारित औसत के संदर्भ में जहां वजन संबंधित निश्चितताओं से प्राप्त होता है। सरलतम मामले में, संबंधित संगणना को चित्रित छवि के निम्न-पास फ़िल्टरिंग के रूप में प्रयुक्त किया जा सकता है। परिणामी फीचर छवि, सामान्य रूप से, शोर के प्रति अधिक स्थिर होगी। | ||
=== [[औसत]]ता === | === [[औसत]]ता === | ||
निरूपण में | निरूपण में सम्मिलित निश्चित उपायों के अलावा, संबंधित फीचर मानों का निरूपण स्वयं एक औसत संचालन के लिए उपयुक्त हो सकता है या नहीं। अधिकांश फीचर प्रस्तुतियों को व्यवहार में औसत किया जा सकता है, लेकिन केवल कुछ मामलों में परिणामी विवरणक को फीचर मान के संदर्भ में सही व्याख्या दी जा सकती है। ऐसे अभ्यावेदन को औसत कहा जाता है। | ||
उदाहरण के लिए, यदि किसी किनारे के अभिविन्यास को कोण के संदर्भ में दर्शाया गया है, तो इस प्रतिनिधित्व में एक असंतोष होना चाहिए जहां कोण अपने अधिकतम मान से न्यूनतम मान तक लपेटता है। परिणामस्वरूप, ऐसा हो सकता है कि दो समान अभिविन्यास कोणों द्वारा दर्शाए जाते हैं जिनका एक मतलब है जो मूल कोणों में से किसी के करीब नहीं है और इसलिए, यह प्रतिनिधित्व औसत नहीं है। एज ओरिएंटेशन के अन्य प्रतिनिधित्व हैं, जैसे संरचना टेन्सर, जो औसत हैं। | उदाहरण के लिए, यदि किसी किनारे के अभिविन्यास को कोण के संदर्भ में दर्शाया गया है, तो इस प्रतिनिधित्व में एक असंतोष होना चाहिए जहां कोण अपने अधिकतम मान से न्यूनतम मान तक लपेटता है। परिणामस्वरूप, ऐसा हो सकता है कि दो समान अभिविन्यास कोणों द्वारा दर्शाए जाते हैं जिनका एक मतलब है जो मूल कोणों में से किसी के करीब नहीं है और इसलिए, यह प्रतिनिधित्व औसत नहीं है। एज ओरिएंटेशन के अन्य प्रतिनिधित्व हैं, जैसे संरचना टेन्सर, जो औसत हैं। | ||
Line 288: | Line 288: | ||
प्रत्येक छवि में पाई गई फीचर्स को संबंधित बिंदुओं जैसे संबंधित फीचर्स को स्थापित करने के लिए कई छवियों से मिलान किया जा सकता है। | प्रत्येक छवि में पाई गई फीचर्स को संबंधित बिंदुओं जैसे संबंधित फीचर्स को स्थापित करने के लिए कई छवियों से मिलान किया जा सकता है। | ||
कलन विधि संदर्भ छवि और लक्ष्य छवि के बीच बिंदु पत्राचार की तुलना और विश्लेषण पर आधारित है। यदि अव्यवस्थित दृश्य का कोई भी हिस्सा प्रारंभ से अधिक पत्राचार साझा करता है, तो अव्यवस्थित दृश्य छवि के उस हिस्से को लक्षित किया जाता है और वहां संदर्भ वस्तु को सम्मिलित करने पर विचार किया जाता है।<ref>{{Cite web|url=https://www.mathworks.com/help/vision/examples/object-detection-in-a-cluttered-scene-using-point-feature-matching.html|title=पॉइंट फ़ीचर मैचिंग - MATLAB और सिमुलिंक का उपयोग करके एक अव्यवस्थित दृश्य में ऑब्जेक्ट डिटेक्शन|website=www.mathworks.com|access-date=2019-07-06}}</ref> | |||
Revision as of 10:56, 13 June 2023
Feature detection |
---|
Edge detection |
Corner detection |
Blob detection |
Ridge detection |
Hough transform |
Structure tensor |
Affine invariant feature detection |
Feature description |
Scale space |
कंप्यूटर दृष्टि और छवि प्रसंस्करण में, फ़ीचर छवि की सामग्री के विषय में जानकारी का एक अंश है सामान्यतः छवि के विषय में कुछ क्षेत्र में कुछ गुण होते हैं। फीचर्स छवि में विशिष्ट संरचनाएं जैसे बिंदु, किनारे या वस्तु हो सकती हैं। फीचर्स सामान्य प्रतिवेश ऑपरेशन छवि का परिणाम हो सकती हैं या फ़ीचर का पता लगाने छवि पर प्रयुक्त भी हो सकती हैं। फीचर्स के अन्य उदाहरण छवि अनुक्रमों में गति से संबंधित हैं, या विभिन्न छवि क्षेत्रों के बीच घटता या सीमाओं के रूप में परिभाषित आकृतियों से संबंधित हैं।
अधिक व्यापक रूप से सुविधा सूचना का कोई भाग है जो निश्चित अनुप्रयोग से संबंधित कम्प्यूटेशनल कार्य को हल करने के लिए प्रासंगिक है। यह सामान्य रूप से यंत्र अधिगम(मशीन लर्निंग) और पैटर्न रिकग्निशन (पैटर्न मान्यता) में फ़ीचर के समान ही है, यद्यपि इमेज प्रोसेसिंग में फीचर्स का एक बहुत ही परिष्कृत संग्रह है। फ़ीचर अवधारणा बहुत सामान्य है और किसी विशेष कंप्यूटर विज़न सिस्टम में फीचर्स का चुनाव विशिष्ट समस्या पर अत्यधिक निर्भर हो सकता है।
परिभाषा
किसी फ़ीचर का गठन करने की कोई सार्वभौमिक या सटीक परिभाषा नहीं है, और सटीक परिभाषा प्रायः समस्या या अनुप्रयोग के प्रकार पर निर्भर करती है। फिर भी, एक फ़ीचर को सामान्यत: एक डिजिटल छवि के एक दिलचस्प हिस्से के रूप में परिभाषित किया जाता है, और फीचर्स का उपयोग कई कंप्यूटर विज़न कलन विधि के लिए शुरुआती बिंदु के रूप में किया जाता है।
चूंकि फीचर्स का उपयोग बाद के कलन विधि के लिए शुरुआती बिंदु और मुख्य पुरातन के रूप में किया जाता है, इसलिए समग्र कलन विधि प्रायः इसके फीचर संसूचक जितना ही अच्छा होगा। परिणामस्वरूप, एक ही दृश्य के दो या दो से अधिक अलग-अलग छवियों में एक ही फ़ीचर का पता लगाया जाएगा या नहीं फीचर संसूचक के लिए वांछनीय गुण आवृत्ति योग्यता है।
फ़ीचर अनुसन्धान एक निम्न-स्तरीय इमेज प्रोसेसिंग ऑपरेशन है। जो की, यह सामान्यत: छवि पर पहले ऑपरेशन के रूप में किया जाता है, और यह देखने के लिए प्रत्येक पिक्सेल की जांच करता है कि उस पिक्सेल में कोई फ़ीचर मौजूद है या नहीं। यदि यह एक बड़े कलन विधि का हिस्सा है, तो कलन विधि सामान्यत केवल फीचर्स के क्षेत्र में छवि की जांच करेगा। फीचर अनुसन्धान के लिए एक अंतर्निहित पूर्व-आवश्यकता के रूप में, इनपुट इमेज को सामान्यत: पर स्केल स्पेस में गौस्सियन धुंधलापन कर्नेल द्वारा स्मूथ किया जाता है। स्केल-स्पेस प्रतिनिधित्व और एक या कई फीचर इमेज की गणना की जाती है, जिसे प्रायः स्थानीयछवि व्युत्पन्न ऑपरेशंस के संदर्भ में व्यक्त किया जाता है। .
कभी-कभी, जब फीचर अनुसन्धान कम्प्यूटेशनल रूप से महंगा होता है और समय की कमी होती है, तो फीचर अनुसन्धान चरण को निर्देशित करने के लिए एक उच्च स्तरीय कलन विधि का उपयोग किया जा सकता है, ताकि छवि के केवल कुछ हिस्सों को फीचर्स के लिए खोजा जा सके।
कई कंप्यूटर विज़न कलन विधि हैं जो प्रारंभिक चरण के रूप में फीचर अनुसन्धान का उपयोग करते हैं, इसलिए इसके परिणामस्वरूप, बहुत बड़ी संख्या में फीचर संसूचक विकसित किए गए हैं। ये पता लगाए गए फीचर, कम्प्यूटेशनल जटिलता और दोहराने योग्यता के प्रकार में व्यापक रूप से भिन्न होते हैं।
जब फीचर्स को एक छवि पर प्रयुक्त स्थानीय प्रतिवेश के संचालन के संदर्भ में परिभाषित किया जाता है, तो एक प्रक्रिया जिसे सामान्यत: पर 'फीचर एक्सट्रैक्शन' कहा जाता है, कोई भी फीचर अनुसन्धान दृष्टिकोणों के बीच अंतर कर सकता है जो स्थानीय निर्णय लेते हैं कि क्या किसी दिए गए चित्र में किसी दिए गए प्रकार की फ़ीचर है या नहीं। बिंदु या नहीं, और जो परिणाम के रूप में गैर-बाइनरी डेटा उत्पन्न करते हैं। भेद तब प्रासंगिक हो जाता है जब परिणामी खोजी गई फीचर्स अपेक्षाकृत विरल होती हैं। हालांकि स्थानीय निर्णय किए जाते हैं, फीचर अनुसन्धान स्टेप से आउटपुट को बाइनरी इमेज होने की आवश्यकता नहीं है। परिणाम प्रायः उन छवि बिंदुओं के सेट (जुड़े या असंबद्ध) निर्देशांक के संदर्भ में प्रस्तुत किया जाता है जहां फीचर्स का पता लगाया गया है, कभी-कभी उप-पिक्सेल सटीकता के साथ।
जब स्थानीय निर्णय लेने के बिना फीचर एक्सट्रैक्शन किया जाता है, तो परिणाम को प्रायः फीचर इमेज के रूप में संदर्भित किया जाता है। परिणामस्वरूप, एक फीचर छवि को छवि के रूप में देखा जा सकता है कि यह मूल छवि के समान स्थानिक (या लौकिक) चर का एक कार्य है, लेकिन जहां पिक्सेल मान तीव्रता या रंग के बजाय छवि फीचर्स के विषय में जानकारी रखते हैं। इसका मतलब यह है कि एक फीचर इमेज को उसी तरह से प्रोसेस किया जा सकता है जैसे इमेज सेंसर द्वारा उत्पन्न एक साधारण इमेज। फीचर छवियों को प्रायः फीचर अनुसन्धान के लिए कलन विधि में एकीकृत कदम के रूप में गिना जाता है।
फीचर वैक्टर और फीचर स्पेस
कुछ अनुप्रयोगों में, छवि डेटा से संबंधित जानकारी प्राप्त करने के लिए केवल एक प्रकार की फ़ीचर निकालना पर्याप्त नहीं है। इसके बजाय दो या दो से अधिक अलग-अलग फीचर्स को निकाला जाता है, जिसके परिणामस्वरूप प्रत्येक छवि बिंदु पर दो या दो से अधिक फीचर डिस्क्रिप्टर होते हैं। एक सामान्य अभ्यास इन सभी विवरणों द्वारा प्रदान की गई जानकारी को एकल वेक्टर के तत्वों के रूप में व्यवस्थित करना है, जिसे सामान्यत: फीचर वेक्टर के रूप में संदर्भित किया जाता है। सभी संभावित फीचर वैक्टर का सेट एक फीचर स्पेस बनाता है।[1]
फीचर वैक्टर का एक सामान्य उदाहरण तब प्रकट होता है जब प्रत्येक छवि बिंदु को एक विशिष्ट वर्ग से संबंधित के रूप में वर्गीकृत किया जाता है। यह मानते हुए कि प्रत्येक छवि बिंदु में फीचर्स के उपयुक्त सेट के आधार पर एक संबंधित फीचर वेक्टर होता है, जिसका अर्थ है कि प्रत्येक वर्ग को संबंधित फीचर स्पेस में अच्छी तरह से अलग किया जाता है, मानक वर्गीकरण पद्धति का उपयोग करके प्रत्येक छवि बिंदु का वर्गीकरण किया जा सकता है।।
एक अन्य और संबंधित उदाहरण तब होता है जब कृत्रिम तंत्रिका नेटवर्क-आधारित प्रसंस्करण छवियों पर प्रयुक्त होता है। तंत्रिका नेटवर्क को सिंचित इनपुट डेटा प्रायः प्रत्येक छवि बिंदु से फीचर वेक्टर के रूप में दिया जाता है, जहां वेक्टर छवि डेटा से निकाले गए कई अलग-अलग फीचर्स से बना होता है। सीखने के चरण के दौरान, नेटवर्क स्वयं यह पता लगा सकता है कि समस्या को हल करने के लिए विभिन्न फीचर्स का कौन सा संयोजन उपयोगी है।
प्रकार
किनारों
किनारे वे बिंदु होते हैं जहां दो छवि क्षेत्रों के बीच एक सीमा (या एक किनारा) होती है। सामान्य तौर पर, एक किनारा लगभग मनमाना आकार का हो सकता है, और इसमें जंक्शन सम्मिलित हो सकते हैं। व्यवहार में, किनारों को सामान्यत: पर छवि में बिंदुओं के सेट के रूप में परिभाषित किया जाता है, जिसमें एक मजबूत ढाल परिमाण होता है। इसके अलावा, कुछ सामान्य कलन विधि फिर एक किनारे का अधिक पूर्ण विवरण बनाने के लिए एक साथ उच्च ढाल वाले बिंदुओं को श्रृंखलाबद्ध करेंगे। ये कलन विधि सामान्यतः पर किनारे के गुणों पर कुछ बाधाएं डालते हैं, जैसे कि आकार, चिकनाई और ढाल मूल्य।
स्थानीय रूप से, किनारों में एक आयामी संरचना होती है।
कोने / ब्याज अंक
शब्दों के कोनों और ब्याज बिंदुओं का उपयोग कुछ हद तक परस्पर विनिमय के लिए किया जाता है और एक छवि में बिंदु जैसी फीचर्स को संदर्भित करता है, जिसमें एक स्थानीय दो आयामी संरचना होती है। कॉर्नर नाम की उत्पत्ति तब से हुई जब शुरुआती कलन विधि ने पहले किनारे का पता लगाना किया, और फिर दिशा (कोनों) में तेजी से बदलाव खोजने के लिए किनारों का विश्लेषण किया। इन कलन विधि को तब विकसित किया गया था ताकि स्पष्ट किनारे का पता लगाने की आवश्यकता न हो, उदाहरण के लिए छवि ढाल में वक्रता के उच्च स्तर की तलाश करके। तब यह देखा गया कि छवि के उन हिस्सों पर तथाकथित कोनों का भी पता लगाया जा रहा था जो पारंपरिक अर्थों में कोने नहीं थे (उदाहरण के लिए एक गहरे रंग की पृष्ठभूमि पर एक छोटा उज्ज्वल स्थान पाया जा सकता है)। इन बिंदुओं को प्रायः रुचि बिंदुओं के रूप में जाना जाता है, लेकिन शब्द का कोना परंपरा द्वारा उपयोग किया जाता है[citation needed].
बूँदें / ब्याज बिंदुओं के क्षेत्र
ब्लॉब्स क्षेत्रों के संदर्भ में छवि संरचनाओं का एक पूरक विवरण प्रदान करते हैं, जो कोनों के विपरीत अधिक बिंदु-समान होते हैं। फिर भी, ब्लॉब डिस्क्रिप्टर में प्रायः एक पसंदीदा बिंदु (ऑपरेटर प्रतिक्रिया का एक स्थानीय अधिकतम या गुरुत्वाकर्षण का केंद्र) हो सकता है, जिसका अर्थ है कि कई ब्लॉब संसूचकों को रुचि बिंदु ऑपरेटर के रूप में भी माना जा सकता है। बूँद संसूचक एक छवि में उन क्षेत्रों का पता लगा सकते हैं जो एक कोने वाले संसूचक द्वारा पहचाने जाने के लिए बहुत चिकने हैं।
एक छवि को सिकोड़ने और फिर कोने का पता लगाने पर विचार करें। संसूचक उन बिंदुओं पर प्रतिक्रिया देगा जो सिकुड़ी हुई छवि में तेज हैं, लेकिन मूल छवि में चिकने हो सकते हैं। यह इस बिंदु पर है कि कोने संसूचक और बूँद संसूचक के बीच का अंतर कुछ अस्पष्ट हो जाता है। काफी हद तक, पैमाने की उपयुक्त धारणा को सम्मिलित करके इस अंतर को दूर किया जा सकता है। फिर भी, विभिन्न पैमानों पर विभिन्न प्रकार की छवि संरचनाओं के लिए उनकी प्रतिक्रिया गुणों के कारण, कोने का पता लगाना पर लेख में LoG और DoH बूँद का पता लगाना का भी उल्लेख किया गया है।
लकीरें
लम्बी वस्तुओं के लिए, लकीरों की धारणा एक प्राकृतिक उपकरण है। एक ग्रे-लेवल छवि से गणना की गई एक रिज डिस्क्रिप्टर को औसत दर्जे की धुरी के सामान्यीकरण के रूप में देखा जा सकता है। एक व्यावहारिक दृष्टिकोण से, एक रिज को एक आयामी वक्र के रूप में माना जा सकता है जो समरूपता के अक्ष का प्रतिनिधित्व करता है, और इसके अतिरिक्त प्रत्येक रिज बिंदु से जुड़े स्थानीय रिज की चौड़ाई का एक गुण है। दुर्भाग्य से, हालांकि, एज-, कॉर्नर- या ब्लॉब फीचर्स की तुलना में ग्रे-लेवल इमेज के सामान्य वर्गों से रिज फीचर्स को निकालना कलन विधििक रूप से कठिन है। फिर भी, रिज डिस्क्रिप्टर का उपयोग प्रायः हवाई छवियों में सड़क निष्कर्षण और चिकित्सा छवियों में रक्त वाहिकाओं को निकालने के लिए किया जाता है - रिज का पता लगाना देखें।
पता लगाना
फ़ीचर अनुसन्धान में छवि जानकारी के सार की गणना करने और प्रत्येक छवि बिंदु पर स्थानीय निर्णय लेने के तरीके सम्मिलित हैं, चाहे उस बिंदु पर किसी दिए गए प्रकार की छवि फ़ीचर हो या नहीं। परिणामी फीचर्स छवि डोमेन के सबसेट होंगे, प्रायः अलग-अलग बिंदुओं, निरंतर घटता या जुड़े क्षेत्रों के रूप में।
फीचर्स का निष्कर्षण कभी-कभी कई स्केलिंग पर किया जाता है। इनमें से एक तरीका स्केल-इनवेरिएंट फीचर ट्रांसफॉर्म (SIFT) है।
Feature detector | Edge | Corner | Blob | Ridge |
---|---|---|---|---|
Canny[2] | Yes | No | No | No |
Sobel | Yes | No | No | No |
Harris & Stephens / Plessey[3] | Yes | Yes | No | No |
SUSAN[4] | Yes | Yes | No | No |
Shi & Tomasi[5] | No | Yes | No | No |
Level curve curvature[6] | No | Yes | No | No |
FAST[7] | No | Yes | Yes | No |
Laplacian of Gaussian[6] | No | Yes | Yes | No |
Difference of Gaussians[8][9] | No | Yes | Yes | No |
Determinant of Hessian[6] | No | Yes | Yes | No |
Hessian strength feature measures[10][11] | No | Yes | Yes | No |
MSER[12] | No | No | Yes | No |
Principal curvature ridges[13][14][15] | No | No | No | Yes |
Grey-level blobs[16] | No | No | Yes | No |
निष्कर्षण
एक बार फीचर्स का पता चलने के बाद, फ़ीचर के आसपास एक स्थानीय छवि पैच निकाला जा सकता है। इस निष्कर्षण में काफी मात्रा में इमेज प्रोसेसिंग सम्मिलित हो सकती है। परिणाम को फीचर डिस्क्रिप्टर या फीचर वेक्टर के रूप में जाना जाता है। वर्णन करने के लिए उपयोग किए जाने वाले दृष्टिकोणों में, एन-जेट | एन-जेट और स्थानीय हिस्टोग्राम का उल्लेख किया जा सकता है (स्थानीय हिस्टोग्राम डिस्क्रिप्टर के एक उदाहरण के लिए स्केल-इनवेरिएंट फीचर ट्रांसफ़ॉर्म देखें)। इस तरह की फ़ीचर जानकारी के अलावा, फीचर अनुसन्धान स्टेप अपने आप में पूरक फ़ीचरएँ भी प्रदान कर सकता है, जैसे कि एज ओरिएंटेशन और एज अनुसन्धान में ग्रेडिएंट परिमाण और ब्लॉब अनुसन्धान में पोलरिटी और ब्लॉब की ताकत।
निम्न स्तर
- किनारे का पता लगाना
- कोने का पता लगाना
- बूँद का पता लगाना
- रिज का पता लगाना
- स्केल-इनवेरिएंट फीचर ट्रांसफॉर्म
वक्रता
- बढ़त की दिशा, बदलती तीव्रता, स्वतः संबंध।
छवि गति
- गति का पता लगाना। क्षेत्र आधारित, अंतर दृष्टिकोण। ऑप्टिकल प्रवाह।
आकार आधारित
- थ्रेसहोल्डिंग (इमेज प्रोसेसिंग)
- बूँद निष्कर्षण
- टेम्पलेट मिलान
- हफ़ ट्रांसफॉर्म
- पंक्तियाँ
- वृत्त/दीर्घवृत्त
- मनमाना आकार (सामान्यीकृत हफ़ ट्रांसफ़ॉर्म)
- किसी भी पैरामीटर योग्य फ़ीचर के साथ काम करता है (वर्ग चर, क्लस्टर पहचान, आदि ..)
- सामान्यीकृत हफ़ परिवर्तन
लचीले तरीके
- विकृत, परिचालित आकार
- सक्रिय आकृति (साँप)
प्रतिनिधित्व
छवि डेटा में एक विशिष्ट संरचना के संदर्भ में परिभाषित एक विशिष्ट छवि फ़ीचर को प्रायः विभिन्न तरीकों से प्रदर्शित किया जा सकता है। उदाहरण के लिए, एक किनारे को प्रत्येक छवि बिंदु में एक बूलियन चर के रूप में दर्शाया जा सकता है जो बताता है कि उस बिंदु पर एक किनारा मौजूद है या नहीं। वैकल्पिक रूप से, हम इसके बजाय एक प्रतिनिधित्व का उपयोग कर सकते हैं जो किनारे के अस्तित्व के बूलियन बयान के बजाय मापन अनिश्चितता प्रदान करता है और इसे किनारे के अभिविन्यास (ज्यामिति) के विषय में जानकारी के साथ जोड़ देता है। इसी तरह, एक विशिष्ट क्षेत्र का रंग या तो औसत रंग (तीन स्केलर) या रंग हिस्टोग्राम (तीन कार्यों) के संदर्भ में प्रदर्शित किया जा सकता है।
जब एक कंप्यूटर विज़न सिस्टम या कंप्यूटर विज़न एल्गोरिथम डिज़ाइन किया जाता है तो फीचर प्रतिनिधित्व का विकल्प एक महत्वपूर्ण मुद्दा हो सकता है। कुछ मामलों में, समस्या को हल करने के लिए किसी फ़ीचर के विवरण में उच्च स्तर का विवरण आवश्यक हो सकता है, लेकिन यह अधिक डेटा और अधिक मांग वाले प्रसंस्करण से निपटने की कीमत पर आता है। नीचे, उपयुक्त प्रतिनिधित्व को चुनने के लिए प्रासंगिक कारकों में से कुछ पर चर्चा की गई है। इस चर्चा में, एक फीचर प्रतिनिधित्व के एक उदाहरण को कहा जाता हैfeature descriptor, या बस वर्णनकर्ता।
निश्चितता या विश्वास
छवि फीचर्स के दो उदाहरण एक छवि अनुक्रम में स्थानीय बढ़त ओरिएंटेशन और स्थानीय वेग हैं। अभिविन्यास के मामले में, इस फ़ीचर का मान अधिक या कम अपरिभाषित हो सकता है यदि संबंधित प्रतिवेश में एक से अधिक किनारे मौजूद हों। स्थानीय वेग अपरिभाषित है यदि संबंधित छवि क्षेत्र में कोई स्थानिक भिन्नता नहीं है। इस अवलोकन के परिणामस्वरूप, फीचर प्रतिनिधित्व का उपयोग करना प्रासंगिक हो सकता है जिसमें फीचर वैल्यू के विषय में बयान से संबंधित निश्चितता या विश्वास का एक उपाय सम्मिलित है। अन्यथा, यह एक विशिष्ट स्थिति है कि एक ही विवरणक का उपयोग इस वर्णनकर्ता की व्याख्या में परिणामी अस्पष्टता के साथ, कम निश्चितता के फीचर मूल्यों और शून्य के करीब फ़ीचर मूल्यों का प्रतिनिधित्व करने के लिए किया जाता है। आवेदन के आधार पर, ऐसी अस्पष्टता स्वीकार्य हो भी सकती है और नहीं भी।
विशेष रूप से, यदि एक चित्रित छवि का उपयोग बाद के प्रसंस्करण में किया जाएगा, तो निश्चितता या विश्वास के विषय में जानकारी सम्मिलित करने वाले फीचर प्रतिनिधित्व को नियोजित करना एक अच्छा विचार हो सकता है। यह एक नए फीचर डिस्क्रिप्टर को कई डिस्क्रिप्टर से गणना करने में सक्षम बनाता है, उदाहरण के लिए एक ही छवि बिंदु पर गणना की जाती है, लेकिन अलग-अलग पैमानों पर, या अलग-अलग लेकिन प्रतिवेशी बिंदुओं से, भारित औसत के संदर्भ में जहां वजन संबंधित निश्चितताओं से प्राप्त होता है। सरलतम मामले में, संबंधित संगणना को चित्रित छवि के निम्न-पास फ़िल्टरिंग के रूप में प्रयुक्त किया जा सकता है। परिणामी फीचर छवि, सामान्य रूप से, शोर के प्रति अधिक स्थिर होगी।
औसतता
निरूपण में सम्मिलित निश्चित उपायों के अलावा, संबंधित फीचर मानों का निरूपण स्वयं एक औसत संचालन के लिए उपयुक्त हो सकता है या नहीं। अधिकांश फीचर प्रस्तुतियों को व्यवहार में औसत किया जा सकता है, लेकिन केवल कुछ मामलों में परिणामी विवरणक को फीचर मान के संदर्भ में सही व्याख्या दी जा सकती है। ऐसे अभ्यावेदन को औसत कहा जाता है।
उदाहरण के लिए, यदि किसी किनारे के अभिविन्यास को कोण के संदर्भ में दर्शाया गया है, तो इस प्रतिनिधित्व में एक असंतोष होना चाहिए जहां कोण अपने अधिकतम मान से न्यूनतम मान तक लपेटता है। परिणामस्वरूप, ऐसा हो सकता है कि दो समान अभिविन्यास कोणों द्वारा दर्शाए जाते हैं जिनका एक मतलब है जो मूल कोणों में से किसी के करीब नहीं है और इसलिए, यह प्रतिनिधित्व औसत नहीं है। एज ओरिएंटेशन के अन्य प्रतिनिधित्व हैं, जैसे संरचना टेन्सर, जो औसत हैं।
एक अन्य उदाहरण गति से संबंधित है, जहां कुछ मामलों में केवल कुछ किनारों के सापेक्ष सामान्य वेग निकाला जा सकता है। यदि ऐसी दो फीचर्स निकाली गई हैं और उन्हें एक ही वास्तविक वेग के रूप में माना जा सकता है, तो यह वेग सामान्य वेग सदिशों के औसत के रूप में नहीं दिया जाता है। इसलिए, सामान्य वेग वैक्टर औसत नहीं हैं। इसके बजाय, मैट्रिसेस या टेन्सर्स का उपयोग करते हुए गतियों के अन्य निरूपण हैं, जो सामान्य वेग वर्णनकर्ताओं के औसत संचालन के संदर्भ में सही वेग देते हैं।[citation needed]
मिलान
प्रत्येक छवि में पाई गई फीचर्स को संबंधित बिंदुओं जैसे संबंधित फीचर्स को स्थापित करने के लिए कई छवियों से मिलान किया जा सकता है।
कलन विधि संदर्भ छवि और लक्ष्य छवि के बीच बिंदु पत्राचार की तुलना और विश्लेषण पर आधारित है। यदि अव्यवस्थित दृश्य का कोई भी हिस्सा प्रारंभ से अधिक पत्राचार साझा करता है, तो अव्यवस्थित दृश्य छवि के उस हिस्से को लक्षित किया जाता है और वहां संदर्भ वस्तु को सम्मिलित करने पर विचार किया जाता है।[17]
यह भी देखें
- कंप्यूटर दृष्टि
- स्वचालित छवि एनोटेशन
- फ़ीचर लर्निंग
- फीचर चयन
- अग्रभूमि पहचान
- वैश्वीकरण (इमेज ट्रेसिंग)
संदर्भ
- ↑ Scott E Umbaugh (27 January 2005). Computer Imaging: Digital Image Analysis and Processing. CRC Press. ISBN 978-0-8493-2919-7.
- ↑ Canny, J. (1986). "A Computational Approach To Edge Detection". IEEE Transactions on Pattern Analysis and Machine Intelligence. 8 (6): 679–714. doi:10.1109/TPAMI.1986.4767851. PMID 21869365. S2CID 13284142.
- ↑ C. Harris; M. Stephens (1988). "A combined corner and edge detector" (PDF). Proceedings of the 4th Alvey Vision Conference. pp. 147–151.
- ↑ S. M. Smith; J. M. Brady (May 1997). "SUSAN - a new approach to low level image processing". International Journal of Computer Vision. 23 (1): 45–78. doi:10.1023/A:1007963824710. S2CID 15033310.
- ↑ J. Shi; C. Tomasi (June 1994). "Good Features to Track". 9th IEEE Conference on Computer Vision and Pattern Recognition. Springer.
- ↑ 6.0 6.1 6.2 T. Lindeberg (1998). "Feature detection with automatic scale selection" (abstract). International Journal of Computer Vision. 30 (2): 77–116. doi:10.1023/A:1008045108935. S2CID 723210.
- ↑ E. Rosten; T. Drummond (2006). "Machine learning for high-speed corner detection". European Conference on Computer Vision. Springer. pp. 430–443. CiteSeerX 10.1.1.60.3991. doi:10.1007/11744023_34.
- ↑ J. L. Crowley and A. C. Parker, "A Representation for Shape Based on Peaks and Ridges in the Difference of Low Pass Transform[dead link]", IEEE Transactions on PAMI, PAMI 6 (2), pp. 156–170, March 1984.
- ↑ D. Lowe (2004). "Distinctive Image Features from Scale-Invariant Keypoints". International Journal of Computer Vision. 60 (2): 91. CiteSeerX 10.1.1.73.2924. doi:10.1023/B:VISI.0000029664.99615.94. S2CID 221242327.
- ↑ T. Lindeberg "Scale selection properties of generalized scale-space interest point detectors", Journal of Mathematical Imaging and Vision, Volume 46, Issue 2, pages 177-210, 2013.
- ↑ T. Lindeberg ``Image matching using generalized scale-space interest points", Journal of Mathematical Imaging and Vision, volume 52, number 1, pages 3-36, 2015.
- ↑ J. Matas; O. Chum; M. Urban; T. Pajdla (2002). "Robust wide baseline stereo from maximally stable extremum regions" (PDF). British Machine Vision Conference. pp. 384–393.
- ↑ R. Haralick, "Ridges and Valleys on Digital Images", Computer Vision, Graphics, and Image Processing vol. 22, no. 10, pp. 28–38, Apr. 1983.
- ↑ D. Eberly, R. Gardner, B. Morse, S. Pizer, C. Scharlach, Ridges for image analysis, Journal of Mathematical Imaging and Vision, v. 4 n. 4, pp. 353–373, Dec. 1994.
- ↑ T. Lindeberg (1998). "Edge detection and ridge detection with automatic scale selection" (abstract). International Journal of Computer Vision. 30 (2): 117–154. doi:10.1023/A:1008097225773. S2CID 207658261.
- ↑ T. Lindeberg (1993). "Detecting Salient Blob-Like Image Structures and Their Scales with a Scale-Space Primal Sketch: A Method for Focus-of-Attention" (abstract). International Journal of Computer Vision. 11 (3): 283–318. doi:10.1007/BF01469346. S2CID 11998035.
- ↑ "पॉइंट फ़ीचर मैचिंग - MATLAB और सिमुलिंक का उपयोग करके एक अव्यवस्थित दृश्य में ऑब्जेक्ट डिटेक्शन". www.mathworks.com. Retrieved 2019-07-06.
अग्रिम पठन
- T. Lindeberg (2009). "Scale-space". In Benjamin Wah (ed.). Encyclopedia of Computer Science and Engineering. Vol. IV. John Wiley and Sons. pp. 2495–2504. doi:10.1002/9780470050118.ecse609. ISBN 978-0470050118. (summary and review of a number of feature detectors formulated based on a scale-space operations)