नम्यता पद्धति: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Technique for computing member forces and displacements in a structure}}
{{Short description|Technique for computing member forces and displacements in a structure}}
{{Refimprove|date=September 2014}}
संरचनात्मक अभियांत्रिकी में, '''नम्यता पद्धति''', जिसे लगातार [[विरूपण (यांत्रिकी)|विरूपण]] की विधि भी कहा जाता है, संरचनात्मक प्रणालियों में सदस्य बल और [[विस्थापन (वेक्टर)|विस्थापन]] की गणना के लिए पारंपरिक विधि है। सदस्यों के लचीलेपन [[मैट्रिक्स (गणित)|मैट्रिक्स]] के संदर्भ में तैयार किए गए इसके आधुनिक संस्करण को प्राथमिक अज्ञात के रूप में सदस्य बलों के उपयोग के कारण मैट्रिक्स बल विधि का नाम भी दिया गया है।<ref name="IUST">{{cite web|title=मैट्रिक्स बल विधि|url=http://www.iust.ac.ir/files/cefsse/pg.cef/Contents/force_method_ch6.pdf|publisher=IUST|access-date=29 December 2012}}</ref>
संरचनात्मक अभियांत्रिकी में, '''नम्यता पद्धति''', जिसे लगातार [[विरूपण (यांत्रिकी)|विरूपण]] की विधि भी कहा जाता है, संरचनात्मक प्रणालियों में सदस्य बल और [[विस्थापन (वेक्टर)|विस्थापन]] की गणना के लिए पारंपरिक विधि है। सदस्यों के लचीलेपन [[मैट्रिक्स (गणित)|मैट्रिक्स]] के संदर्भ में तैयार किए गए इसके आधुनिक संस्करण को प्राथमिक अज्ञात के रूप में सदस्य बलों के उपयोग के कारण मैट्रिक्स बल विधि का नाम भी दिया गया है।<ref name="IUST">{{cite web|title=मैट्रिक्स बल विधि|url=http://www.iust.ac.ir/files/cefsse/pg.cef/Contents/force_method_ch6.pdf|publisher=IUST|access-date=29 December 2012}}</ref>
== सदस्य लचीलापन ==
== सदस्य लचीलापन ==
लचीलापन [[कठोरता]] का विलोम है। उदाहरण के लिए, एक संख्या पर विचार करें जिसमें क्यू और क्यू क्रमशः इसकी ऊर्जा और विरूपण है:
लचीलापन [[कठोरता]] का विलोम है। उदाहरण के लिए, एक संख्या पर विचार करें जिसमें Q और q क्रमशः इसकी ऊर्जा और विरूपण है:
* संख्या की कठोरता का संबंध Q = k q है जहां k संख्या की कठोरता है।
* संख्या की कठोरता का संबंध Q = k q है जहां k संख्या की कठोरता है।
* इसका लचीलापन संबंध q = f Q है, जहाँ f संख्या का लचीलापन है।
* इसका लचीलापन संबंध q = f Q है, जहाँ f संख्या का लचीलापन है।
Line 12: Line 11:
{{NumBlk|:|<math>\mathbf{q}^m = \mathbf{f}^m \mathbf{Q}^m + \mathbf{q}^{om}</math>|{{EquationRef|1}}}}
{{NumBlk|:|<math>\mathbf{q}^m = \mathbf{f}^m \mathbf{Q}^m + \mathbf{q}^{om}</math>|{{EquationRef|1}}}}
जहाँ
जहाँ
: एम = सदस्य संख्या एम है।
: m = सदस्य संख्या m है।
:<math>\mathbf{q}^m </math> = सदस्य की विशिष्ट विकृतियों का वेक्टर है।
:<math>\mathbf{q}^m </math> = सदस्य की विशिष्ट विकृतियों का वेक्टर है।
:<math>\mathbf{f}^m </math> = सदस्य लचीलापन मैट्रिक्स जो बल के अनुसार विकृत होने के लिए सदस्य की संवेदनशीलता को दर्शाता है।
:<math>\mathbf{f}^m </math> = सदस्य लचीलापन मैट्रिक्स जो बल के अनुसार विकृत होने के लिए सदस्य की संवेदनशीलता को दर्शाता है।
Line 22: Line 21:
{{NumBlk|:|<math>\mathbf{q}_{M \times 1} = \mathbf{f}_{M \times M} \mathbf{Q}_{M \times 1} + \mathbf{q}^{o}_{M \times 1} </math>|{{EquationRef|2}}}}
{{NumBlk|:|<math>\mathbf{q}_{M \times 1} = \mathbf{f}_{M \times M} \mathbf{Q}_{M \times 1} + \mathbf{q}^{o}_{M \times 1} </math>|{{EquationRef|2}}}}


जहां एम प्रणाली में सदस्यों की विशेषता विकृतियों या बलों की कुल संख्या होती है।
जहां M प्रणाली में सदस्यों की विशेषता विकृतियों या बलों की कुल संख्या होती है।


[[मैट्रिक्स कठोरता विधि]] के विपरीत, जहां सदस्यों की कठोरता संबंधों को नोडल संतुलन और अनुकूलता स्थितियों के माध्यम से आसानी से एकीकृत किया जा सकता है, समीकरण का वर्तमान लचीलापन रूप ({{EquationNote|2}}) गंभीर कठिनाई उत्पन्न करता है। सदस्य बलों के साथ <math> \mathbf{Q}_{M \times 1} </math> प्राथमिक अज्ञात के रूप में, नोडल संतुलन समीकरणों की संख्या समाधान के लिए अपर्याप्त होती है, सामान्यतः - जब तक कि प्रणाली [[स्थिर रूप से निर्धारित]] नहीं होती है।
[[मैट्रिक्स कठोरता विधि]] के विपरीत, जहां सदस्यों की कठोरता संबंधों को नोडल संतुलन और अनुकूलता स्थितियों के माध्यम से आसानी से एकीकृत किया जा सकता है, समीकरण का वर्तमान लचीलापन रूप ({{EquationNote|2}}) गंभीर कठिनाई उत्पन्न करता है। सदस्य बलों के साथ <math> \mathbf{Q}_{M \times 1} </math> प्राथमिक अज्ञात के रूप में, नोडल संतुलन समीकरणों की संख्या समाधान के लिए अपर्याप्त होती है, सामान्यतः - जब तक कि प्रणाली [[स्थिर रूप से निर्धारित]] नहीं होती है।
Line 36: Line 35:
: <math> \mathbf{W}_{N \times 1} </math>: सदस्यों पर भार डालने से उत्पन्न होने वाली ऊर्जा का सदिश है।
: <math> \mathbf{W}_{N \times 1} </math>: सदस्यों पर भार डालने से उत्पन्न होने वाली ऊर्जा का सदिश है।


निर्धारित प्रणालियों के स्थिति में, मैट्रिक्स बी वर्ग है और क्यू के लिए समाधान तुरंत पाया जा सकता है ({{EquationNote|3}})।
निर्धारित प्रणालियों के स्थिति में, मैट्रिक्स B वर्ग है और q के लिए समाधान तुरंत पाया जा सकता है ({{EquationNote|3}})।


== प्राथमिक प्रणाली ==
== प्राथमिक प्रणाली ==
Line 75: Line 74:
:<math> \mathbf{r}^o_R = \mathbf{B}_R^T \Big[ \mathbf{f}
:<math> \mathbf{r}^o_R = \mathbf{B}_R^T \Big[ \mathbf{f}
\Big( \mathbf{B}_X \mathbf{X} + \mathbf{Q}_v \Big) + \mathbf{q}^{o} \Big] </math>
\Big( \mathbf{B}_X \mathbf{X} + \mathbf{Q}_v \Big) + \mathbf{q}^{o} \Big] </math>
बेमानी पर होने वाले समर्थन आंदोलनों को समीकरण के दाहिने हाथ में सम्मलित किया जा सकता है ({{EquationNote|7}}), जबकि अन्य स्थानों पर समर्थन के <math> \mathbf{r}^o_X </math> और <math> \mathbf{r}^o_R </math> आंदोलनों को सम्मलित किया जाना चाहिए।
बेमानी पर होने वाले समर्थन आंदोलनों को समीकरण के दाहिने हाथ में सम्मलित किया जा सकता है ({{EquationNote|7}}), जबकि अन्य स्थानों पर समर्थन के <math> \mathbf{r}^o_X </math> और <math> \mathbf{r}^o_R </math> आंदोलनों को सम्मलित किया जाना चाहिए।


== फायदे और नुकसान ==
== फायदे और नुकसान ==
Line 96: Line 95:
==बाहरी संबंध==
==बाहरी संबंध==
*[http://www.public.iastate.edu/~fanous/ce332/force/homepage.html Consistent Deformations - Force Method]
*[http://www.public.iastate.edu/~fanous/ce332/force/homepage.html Consistent Deformations - Force Method]
 
[[Category: संरचनात्मक विश्लेषण]]  
{{Structural engineering topics}}[[Category: संरचनात्मक विश्लेषण]] [[Category: सीमित तत्व विधि]]  
[[Category: सीमित तत्व विधि]]  
 
 


[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 21/03/2023]]
[[Category:Created On 21/03/2023]]

Revision as of 11:01, 27 March 2023

संरचनात्मक अभियांत्रिकी में, नम्यता पद्धति, जिसे लगातार विरूपण की विधि भी कहा जाता है, संरचनात्मक प्रणालियों में सदस्य बल और विस्थापन की गणना के लिए पारंपरिक विधि है। सदस्यों के लचीलेपन मैट्रिक्स के संदर्भ में तैयार किए गए इसके आधुनिक संस्करण को प्राथमिक अज्ञात के रूप में सदस्य बलों के उपयोग के कारण मैट्रिक्स बल विधि का नाम भी दिया गया है।[1]

सदस्य लचीलापन

लचीलापन कठोरता का विलोम है। उदाहरण के लिए, एक संख्या पर विचार करें जिसमें Q और q क्रमशः इसकी ऊर्जा और विरूपण है:

  • संख्या की कठोरता का संबंध Q = k q है जहां k संख्या की कठोरता है।
  • इसका लचीलापन संबंध q = f Q है, जहाँ f संख्या का लचीलापन है।
  • इसलिए, f = 1/k। है।

एक विशिष्ट सदस्य लचीलेपन के संबंध में निम्नलिखित सामान्य रूप है:

 

 

 

 

(1)

जहाँ

m = सदस्य संख्या m है।
= सदस्य की विशिष्ट विकृतियों का वेक्टर है।
= सदस्य लचीलापन मैट्रिक्स जो बल के अनुसार विकृत होने के लिए सदस्य की संवेदनशीलता को दर्शाता है।
= सदस्य की स्वतंत्र चारित्रिक ऊर्जायों का सदिश, जो अज्ञात आंतरिक बल है। ये स्वतंत्र बल सदस्य संतुलन द्वारा सभी सदस्य-अंत बलों को उत्पन्न करते है।
= बाहरी प्रभाव के कारण सदस्यों की विशेषता विकृति पृथक, डिस्कनेक्ट किए गए सदस्य पर लागू होती है ).

नोड्स नामक बिंदुओं पर परस्पर जुड़े कई सदस्यों से बनी एक प्रणाली के लिए, सदस्यों के लचीलेपन संबंधों को एक एकल मैट्रिक्स समीकरण में एक साथ रखा जा सकता है, सुपरस्क्रिप्ट m को छोड़ कर:

 

 

 

 

(2)

जहां M प्रणाली में सदस्यों की विशेषता विकृतियों या बलों की कुल संख्या होती है।

मैट्रिक्स कठोरता विधि के विपरीत, जहां सदस्यों की कठोरता संबंधों को नोडल संतुलन और अनुकूलता स्थितियों के माध्यम से आसानी से एकीकृत किया जा सकता है, समीकरण का वर्तमान लचीलापन रूप (2) गंभीर कठिनाई उत्पन्न करता है। सदस्य बलों के साथ प्राथमिक अज्ञात के रूप में, नोडल संतुलन समीकरणों की संख्या समाधान के लिए अपर्याप्त होती है, सामान्यतः - जब तक कि प्रणाली स्थिर रूप से निर्धारित नहीं होती है।

नोडल संतुलन समीकरण

इस कठिनाई को हल करने के लिए, स्वतंत्र अज्ञात सदस्य बलों की संख्या को कम करने के लिए पहले हम नोडल संतुलन समीकरणों का उपयोग करते है। प्रणाली के लिए नोडल संतुलन समीकरण का रूप है:

 

 

 

 

(3)

जहाँ

: प्रणाली की स्वतंत्रता (अभियांत्रिकी) की सभी एन डिग्री पर नोडल बलों का वेक्टर है।
: परिणामी नोडल संतुलन मैट्रिक्स है।
: सदस्यों पर भार डालने से उत्पन्न होने वाली ऊर्जा का सदिश है।

निर्धारित प्रणालियों के स्थिति में, मैट्रिक्स B वर्ग है और q के लिए समाधान तुरंत पाया जा सकता है (3)।

प्राथमिक प्रणाली

सांख्यिकीय रूप से अनिश्चित प्रणालियों के लिए, एम> एन, और इसलिए, हम फॉर्म के I = एम-एन समीकरणों के साथ (3) बढ़ा सकते है:

 

 

 

 

(4)

वेक्टर X अतिरेक बलों का तथाकथित वेक्टर है और I प्रणाली की स्थैतिक अनिश्चितता की डिग्री है। हम सामान्यतः जे, के, ... चुनते है। , और ऐसा है कि एक समर्थन प्रतिक्रिया या एक आंतरिक सदस्य-अंत बल है। निरर्थक बलों के उपयुक्त विकल्पों के साथ, समीकरण प्रणाली (3) द्वारा संवर्धित (4) अब प्राप्त करने के लिए हल किया जा सकता है:

 

 

 

 

(5)

में प्रतिस्थापन (2) देता है:

 

 

 

 

(6)

समीकरण (5) और (6) प्राथमिक प्रणाली के लिए समाधान है जो मूल प्रणाली है जिसे अनावश्यक बलों को स्थिर रूप से निर्धारित किया गया है . समीकरण (5) अज्ञात बलों के सेट को प्रभावी ढंग से कम कर देता है .

संगतता समीकरण और समाधान

अगला, हमें खोजने के लिए संगतता समीकरण सेट अप करने की आवश्यकता है अनुकूलता समीकरण सापेक्ष विस्थापन को शून्य पर सापेक्ष विस्थापन X सेट करके कटे हुए वर्गों पर आवश्यक निरंतरता को बहाल करते है। अर्थात्, इकाई डमी बल विधि का उपयोग करना:

 

 

 

 

(7a)

or

 

 

 

 

(7b)

जहाँ

समीकरण (7b) एक्स के लिए हल किया जा सकता है, और सदस्य बल अगले से पाए जाते है (5) जबकि नोडल विस्थापन द्वारा पाया जा सकता है

जहाँ

प्रणाली लचीलापन मैट्रिक्स है।

बेमानी पर होने वाले समर्थन आंदोलनों को समीकरण के दाहिने हाथ में सम्मलित किया जा सकता है (7), जबकि अन्य स्थानों पर समर्थन के और आंदोलनों को सम्मलित किया जाना चाहिए।

फायदे और नुकसान

जबकि (4) में निरर्थक बलों का चुनाव स्वचालित संगणना के लिए मनमाना और परेशानी भरा प्रतीत होता है, संशोधित गॉस-जॉर्डन उन्मूलन प्रक्रिया का उपयोग करके (3) सीधे (5) से आगे बढ़कर इस आपत्ति को दूर किया जा सकता है। यह एक मजबूत प्रक्रिया है जो संख्यात्मक स्थिरता सुनिश्चित करने के लिए स्वचालित रूप से अनावश्यक बलों का एक अच्छा सेट चुनती है।

उपरोक्त प्रक्रिया से यह स्पष्ट है कि स्वचालित गणना के लिए मैट्रिक्स कठोरता विधि को समझना और लागू करना आसान होता है। उन्नत अनुप्रयोगों जैसे गैर-रैखिक विश्लेषण, स्थिरता, कंपन आदि के लिए विस्तार करना भी आसान होता है। इन कारणों से, मैट्रिक्स कठोरता विधि सामान्य प्रयोजन संरचनात्मक विश्लेषण सॉफ्टवेयर पैकेजों में उपयोग के लिए पसंद की विधि है। दूसरी ओर, रैखिक प्रणालियों के लिए स्थैतिक अनिश्चितता की कम डिग्री के साथ, नम्यता पद्धति में कम्प्यूटेशनल रूप से कम गहन होने का लाभ होता है। चूँकि, यह लाभ एक विवादास्पद बिंदु है क्योंकि व्यक्तिगत कंप्यूटर व्यापक रूप से उपलब्ध होते है और अधिक ऊर्जाशाली होते है। आजकल इस पद्धति को सीखने में मुख्य रिडीमिंग कारक इसके ऐतिहासिक मूल्य के अतिरिक्त संतुलन और अनुकूलता की अवधारणाओं को प्रदान करने में इसका शैक्षिक मूल्य होता है। इसके विपरीत, प्रत्यक्ष कठोरता पद्धति की प्रक्रिया इतनी यांत्रिक है कि यह संरचनात्मक व्यवहारों की अधिक समझ के बिना उपयोग किए जाने का जोखिम उठाती है।

ऊपरी तर्क 1990 के दशक के अंत तक मान्य थे। चूँकि, संख्यात्मक कंप्यूटिंग में हालिया प्रगति ने बल पद्धति की वापसी दिखाई है, विशेष रूप से अरैखिक प्रणालियों के स्थिति में दिखाई है। नए ढांचे विकसित किए गए है जो प्रणाली गैर-रैखिकताओं के प्रकार या प्रकृति के अतिरिक्त त्रुटिहीन फॉर्मूलेशन की अनुमति देते है। नम्यता पद्धति का मुख्य लाभ यह है कि परिणाम त्रुटि मॉडल के विवेक से स्वतंत्र है और यह वास्तव में एक बहुत तेज़ विधि है। उदाहरण के लिए, बल विधि का उपयोग करते हुए एक निरंतर बीम के लोचदार-प्लास्टिक समाधान के लिए केवल 4 बीम तत्वों की आवश्यकता होती है, जबकि एक वाणिज्यिक कठोरता आधारित परिमित तत्व विधि कोड को समान त्रुटिहीनता के साथ परिणाम देने के लिए 500 तत्वों की आवश्यकता होती है। निष्कर्ष निकालने के लिए, यह कह सकते है कि समस्या के समाधान के लिए बल क्षेत्र के पुनरावर्ती मूल्यांकन की आवश्यकता होती है जैसे संरचनात्मक अनुकूलन या प्रणाली पहचान के स्थिति में, नम्यता पद्धति की दक्षता निर्विवाद होती है।

यह भी देखें

संदर्भ

  1. "मैट्रिक्स बल विधि" (PDF). IUST. Retrieved 29 December 2012.


बाहरी संबंध