नम्यता पद्धति: Difference between revisions

From Vigyanwiki
No edit summary
Line 81: Line 81:
उपरोक्त प्रक्रिया से यह स्पष्ट है कि स्वचालित गणना के लिए मैट्रिक्स संदृढ़ता विधि को समझना और लागू करना आसान होता है।  इन कारणों से, मैट्रिक्स संदृढ़ता विधि सामान्य प्रयोजन संरचनात्मक विश्लेषण सॉफ्टवेयर पैकेजों में उपयोग के लिए पसंदीदा विधि है। दूसरी ओर, रैखिक समीकरणों के लिए स्थैतिक अनिश्चितता की कम डिग्री के साथ, नम्यता पद्धति में कम्प्यूटेशनल रूप से कम गहन होने का लाभ होता है। चूँकि, यह लाभ एक विवादास्पद बिंदु है क्योंकि व्यक्तिगत कंप्यूटर व्यापक रूप से उपलब्ध होते है और अधिक ऊर्जाशाली होते है। आजकल इस पद्धति को सीखने में मुख्य रिडीमिंग कारक इसके ऐतिहासिक मूल्य के अतिरिक्त संतुलन और अनुकूलता की अवधारणाओं को प्रदान करने में इसका शैक्षिक मूल्य होता है। इसके विपरीत, प्रत्यक्ष संदृढ़ता पद्धति की प्रक्रिया इतनी यांत्रिक है कि यह संरचनात्मक व्यवहारों की अधिक समझ के बिना उपयोग किए जाने का जोखिम उठाती है।
उपरोक्त प्रक्रिया से यह स्पष्ट है कि स्वचालित गणना के लिए मैट्रिक्स संदृढ़ता विधि को समझना और लागू करना आसान होता है।  इन कारणों से, मैट्रिक्स संदृढ़ता विधि सामान्य प्रयोजन संरचनात्मक विश्लेषण सॉफ्टवेयर पैकेजों में उपयोग के लिए पसंदीदा विधि है। दूसरी ओर, रैखिक समीकरणों के लिए स्थैतिक अनिश्चितता की कम डिग्री के साथ, नम्यता पद्धति में कम्प्यूटेशनल रूप से कम गहन होने का लाभ होता है। चूँकि, यह लाभ एक विवादास्पद बिंदु है क्योंकि व्यक्तिगत कंप्यूटर व्यापक रूप से उपलब्ध होते है और अधिक ऊर्जाशाली होते है। आजकल इस पद्धति को सीखने में मुख्य रिडीमिंग कारक इसके ऐतिहासिक मूल्य के अतिरिक्त संतुलन और अनुकूलता की अवधारणाओं को प्रदान करने में इसका शैक्षिक मूल्य होता है। इसके विपरीत, प्रत्यक्ष संदृढ़ता पद्धति की प्रक्रिया इतनी यांत्रिक है कि यह संरचनात्मक व्यवहारों की अधिक समझ के बिना उपयोग किए जाने का जोखिम उठाती है।


ऊपरी तर्क 1990 के दशक के अंत तक मान्य थे। चूँकि, संख्यात्मक कंप्यूटिंग में प्रगति ने बल पद्धति की वापसी दिखाई है, विशेष रूप से अरैखिक समीकरणों के स्थिति में दिखाई है। नए ढांचे विकसित किए गए है जो समीकरण गैर-रैखिकताओं के प्रकार या प्रकृति के अतिरिक्त त्रुटिहीन फॉर्मूलेशन की अनुमति देते है। नम्यता पद्धति का मुख्य लाभ यह है कि यह परिणाम त्रुटि मॉडल के विवेक से स्वतंत्र होता है और यह वास्तव में एक बहुत तेज विधि होती है । उदाहरण के लिए, बल विधि का उपयोग करते हुए एक निरंतर बीम के लोचदार-प्लास्टिक समाधान के लिए केवल 4 बीम तत्वों की आवश्यकता होती है, जबकि एक वाणिज्यिक संदृढ़ता आधारित परिमित तत्व विधि कोड को समान त्रुटिहीनता के साथ परिणाम देने के लिए 500 तत्वों की आवश्यकता होती है। निष्कर्ष निकालने के लिए, यह कह सकते है कि समस्या के समाधान के लिए बल क्षेत्र के पुनरावर्ती मूल्यांकन की आवश्यकता होती है जैसे संरचनात्मक अनुकूलन या [[सिस्टम पहचान|समीकरण पहचान]] के स्थिति में, नम्यता पद्धति की दक्षता निर्विवाद होती है।
ऊपरी तर्क 1990 के दशक के अंत तक मान्य थे। चूँकि, संख्यात्मक कंप्यूटिंग में प्रगति ने बल पद्धति की वापसी दिखाई है, विशेष रूप से अरैखिक समीकरणों के स्थिति में दिखाई है। नए ढांचे विकसित किए गए है जो समीकरण गैर-रैखिकताओं के प्रकार या प्रकृति के अतिरिक्त त्रुटिहीन फॉर्मूलेशन की अनुमति देते है। नम्यता पद्धति का मुख्य लाभ यह है कि यह परिणाम त्रुटि मॉडल के विवेक से स्वतंत्र होता है और यह वास्तव में एक बहुत तेज विधि होती है। उदाहरण के लिए, बल विधि का उपयोग करते हुए एक निरंतर बीम के लोचदार-प्लास्टिक समाधान के लिए केवल 4 बीम तत्वों की आवश्यकता होती है, जबकि एक वाणिज्यिक संदृढ़ता आधारित परिमित तत्व विधि कोड को समान त्रुटिहीनता के साथ परिणाम देने के लिए 500 तत्वों की आवश्यकता होती है। निष्कर्ष निकालने के लिए, यह कह सकते है कि समस्या के समाधान के लिए बल क्षेत्र के पुनरावर्ती मूल्यांकन की आवश्यकता होती है जैसे संरचनात्मक अनुकूलन या [[सिस्टम पहचान|समीकरण पहचान]] के स्थिति में, नम्यता पद्धति की दक्षता निर्विवाद होती है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 12:37, 11 April 2023

संरचनात्मक इंजीनियरिंग में, नम्यता विधि जिसे लगातार विकृतियों की विधि भी कहा जाता है, संरचनात्मक प्रणालियों में सदस्य बल और विस्थापन की गणना के लिए पारंपरिक विधि है। इकाईयोंके नम्यता मैट्रिक्स के संदर्भ में तैयार किए गए इसके आधुनिक संस्करण को प्राथमिक अज्ञात इकाईयों के रूप में इकाईयों बलों के उपयोग के कारण इसे मैट्रिक्स बल विधि का नाम भी दिया गया है।[1]

इकाईयों नम्यता

नम्यता संदृढ़ता का विलोम होता है। उदाहरण के लिए, एक स्प्रिंग पर विचार करें जिसमें Q और q क्रमशः इसकी ऊर्जा और विरूपण होते है:

  • स्प्रिंग की संदृढ़ता का संबंध Q = k q है जहां k स्प्रिंग की संदृढ़ता से है
  • इसका नम्यता संबंध q = f Q है, जहाँ f स्प्रिंग का नम्यता होती है
  • इसलिए, f = 1/k। है

एक विशिष्ट इकाईयों की नम्यता के संबंध में निम्नलिखित सामान्य रूप से है:

 

 

 

 

(1)

जहाँ

m = इकाई संख्या m है
= इकाई की विशिष्ट विकृतियों का सदिश है
= इकाई नम्यता मैट्रिक्स बल के अनुसार विकृत होने के लिए इकाईयों की संवेदनशीलता को दर्शाता है
= इकाई की स्वतंत्र चारित्रिक ऊर्जा का सदिश, जो अज्ञात आंतरिक बल होता है। ये स्वतंत्र बल इकाईयों के संतुलन द्वारा सभी इकाई -अंत बलों को उत्पन्न करता है
= बाहरी प्रभाव के कारण इकाईयों की विशेषता विकृति वियुक्त, असंगत किए गए इकाईयों पर लागू होती है ).

नोड्स नामक बिंदुओं पर परस्पर जुड़े कई इकाईयों से बनी एक प्रणाली के लिए, इकाईयों के नम्यता संबंधों को एक एकल मैट्रिक्स समीकरण में एक साथ रखा जा सकता है, अधिलेख m को छोड़ कर:

 

 

 

 

(2)

जहां M समीकरण में इकाईयों की विशेषता विकृतियों या बलों की कुल संख्या होती है

मैट्रिक्स संदृढ़ता विधि के विपरीत, जहां इकाईयों की संदृढ़ता संबंधों को नोडल संतुलन और अनुकूलता स्थितियों के माध्यम से आसानी से एकीकृत किया जा सकता है, समीकरण का वर्तमान नम्यता रूप (2) गंभीर कठिनाई उत्पन्न करता है। इकाईयों बलों के साथ प्राथमिक अज्ञात के रूप में, नोडल संतुलन समीकरणों की संख्या समाधान के लिए अपर्याप्त होती है, सामान्यतः - जब तक कि समीकरण स्थिर रूप से निर्धारित नहीं होती है।

नोडल संतुलन समीकरण

इस कठिनाई को हल करने के लिए, स्वतंत्र अज्ञात इकाईयों बलों की संख्या को कम करने के लिए पहले हम नोडल संतुलन समीकरणों का उपयोग करते है। समीकरण के लिए नोडल संतुलन समीकरण का रूप होता है:

 

 

 

 

(3)

जहाँ

: समीकरण की स्वतंत्रता N डिग्री नोडल बलों का सदिश है
: परिणामी नोडल संतुलन मैट्रिक्स है
: इकाईयों पर भार डालने से उत्पन्न होने वाली ऊर्जा का सदिश होती है

निर्धारित समीकरणों के स्थिति में, मैट्रिक्स B वर्ग है और q के लिए उपाय तुरंत पाया जा सकता है (3)

प्राथमिक समीकरण

सांख्यिकीय रूप से अनिश्चित प्रणालियों के लिए, M > N, और इसलिए, फॉर्म के I = M-N समीकरणों के साथ (3) के बढ़ा सकते हैं

 

 

 

 

(4)

सदिश X अतिरेक बलों का तथाकथित सदिश है और I समीकरण की स्थैतिक अनिश्चितता की डिग्री है। हम सामान्यतः j, k, …, अल्फा, और\बीटा कि एक समर्थन प्रतिक्रिया या एक आंतरिक इकाईयों-अंत बल है। निरर्थक बलों के उपयुक्त विकल्पों के साथ, समीकरण (3) द्वारा संवर्धित समीकरण प्रणाली (4) को अब प्राप्त करने के लिए हल किया जा सकता है:

 

 

 

 

(5)

में प्रतिस्थापन (2) देता है:

 

 

 

 

(6)

समीकरण (5) और (6) प्राथमिक प्रणाली के लिए समाधान हैं जो मूल प्रणाली है जिसे कटौती द्वारा सांख्यिकीय रूप से निर्धारित किया गया है जो अनावश्यक ताकतों को उजागर करता है . समीकरण (5) प्रभावी रूप से अज्ञात बलों के समुच्चय को कम कर देता है .

संगतता समीकरण और समाधान

अगला, हमें प्राप्त करना के लिए संगतता समीकरण सेट अप करने की आवश्यकता होती है अनुकूलता समीकरण संबंधित विस्थापनों को सेट करके कट सेक्शन में आवश्यक निरंतरता को बहाल करते हैं अनावश्यक, अर्थात्, इकाई डमी बल विधि का उपयोग करते है:

 

 

 

 

(7a)

या

 

 

 

 

(7b)

जहाँ

समीकरण (7b) X के लिए हल किया जा सकता है, और इकाईयों बल अगले से पाए जाते है (5) जबकि नोडल विस्थापन द्वारा पाया जा सकता है

जहाँ

समीकरण नम्यता मैट्रिक्स है।

समर्थन को समीकरण के दाहिने हाथ में सम्मलित किया जा सकता है (7), जबकि अन्य स्थानों पर समर्थन के और को सम्मलित किया जाना चाहिए।

फायदे और नुकसान

जबकि (4) निरर्थक बलों का चुनाव स्वचालित संगणना के लिए यादृच्छिक और असुविधा से भरा प्रतीत होता है, संशोधित गॉस-जॉर्डन उन्मूलन प्रक्रिया का उपयोग करके (3) सीधे (5) से आगे बढ़कर इस आपत्ति को दूर किया जा सकता है।यह एक मजबूत प्रक्रिया है जो संख्यात्मक स्थिरता सुनिश्चित करने के लिए स्वचालित रूप से अनावश्यक बलों का एक अच्छा सेट चुनती है।

उपरोक्त प्रक्रिया से यह स्पष्ट है कि स्वचालित गणना के लिए मैट्रिक्स संदृढ़ता विधि को समझना और लागू करना आसान होता है। इन कारणों से, मैट्रिक्स संदृढ़ता विधि सामान्य प्रयोजन संरचनात्मक विश्लेषण सॉफ्टवेयर पैकेजों में उपयोग के लिए पसंदीदा विधि है। दूसरी ओर, रैखिक समीकरणों के लिए स्थैतिक अनिश्चितता की कम डिग्री के साथ, नम्यता पद्धति में कम्प्यूटेशनल रूप से कम गहन होने का लाभ होता है। चूँकि, यह लाभ एक विवादास्पद बिंदु है क्योंकि व्यक्तिगत कंप्यूटर व्यापक रूप से उपलब्ध होते है और अधिक ऊर्जाशाली होते है। आजकल इस पद्धति को सीखने में मुख्य रिडीमिंग कारक इसके ऐतिहासिक मूल्य के अतिरिक्त संतुलन और अनुकूलता की अवधारणाओं को प्रदान करने में इसका शैक्षिक मूल्य होता है। इसके विपरीत, प्रत्यक्ष संदृढ़ता पद्धति की प्रक्रिया इतनी यांत्रिक है कि यह संरचनात्मक व्यवहारों की अधिक समझ के बिना उपयोग किए जाने का जोखिम उठाती है।

ऊपरी तर्क 1990 के दशक के अंत तक मान्य थे। चूँकि, संख्यात्मक कंप्यूटिंग में प्रगति ने बल पद्धति की वापसी दिखाई है, विशेष रूप से अरैखिक समीकरणों के स्थिति में दिखाई है। नए ढांचे विकसित किए गए है जो समीकरण गैर-रैखिकताओं के प्रकार या प्रकृति के अतिरिक्त त्रुटिहीन फॉर्मूलेशन की अनुमति देते है। नम्यता पद्धति का मुख्य लाभ यह है कि यह परिणाम त्रुटि मॉडल के विवेक से स्वतंत्र होता है और यह वास्तव में एक बहुत तेज विधि होती है। उदाहरण के लिए, बल विधि का उपयोग करते हुए एक निरंतर बीम के लोचदार-प्लास्टिक समाधान के लिए केवल 4 बीम तत्वों की आवश्यकता होती है, जबकि एक वाणिज्यिक संदृढ़ता आधारित परिमित तत्व विधि कोड को समान त्रुटिहीनता के साथ परिणाम देने के लिए 500 तत्वों की आवश्यकता होती है। निष्कर्ष निकालने के लिए, यह कह सकते है कि समस्या के समाधान के लिए बल क्षेत्र के पुनरावर्ती मूल्यांकन की आवश्यकता होती है जैसे संरचनात्मक अनुकूलन या समीकरण पहचान के स्थिति में, नम्यता पद्धति की दक्षता निर्विवाद होती है।

यह भी देखें

संदर्भ

  1. "मैट्रिक्स बल विधि" (PDF). IUST. Retrieved 29 December 2012.


बाहरी संबंध