पैनल डेटा: Difference between revisions
(Created page with "{{Short description|Longitudinal statistical study}} {{More footnotes|date=June 2020}} सांख्यिकी और अर्थमिति में, पैनल...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Longitudinal statistical study}} | {{Short description|Longitudinal statistical study}} | ||
{{More footnotes|date=June 2020}} | {{More footnotes|date=June 2020}} | ||
सांख्यिकी और [[अर्थमिति]] में, पैनल | सांख्यिकी और [[अर्थमिति]] में, पैनल आँकड़े और अनुदैर्ध्य आँकड़े<ref>{{cite book|title=अनुदैर्ध्य डेटा का विश्लेषण|url=https://archive.org/details/analysislongitud00digg_730|url-access=limited|last=Diggle|first=Peter J.|last2=Heagerty|first2=Patrick|last3=Liang|first3=Kung-Yee|last4=Zeger|first4=Scott L.|publisher=Oxford University Press|year=2002|isbn=0-19-852484-6|edition=2nd|page=[https://archive.org/details/analysislongitud00digg_730/page/n19 2]}}</ref><ref>{{cite book|title=अनुप्रयुक्त अनुदैर्ध्य विश्लेषण|last=Fitzmaurice|first=Garrett M.|last2=Laird|first2=Nan M.|last3=Ware|first3=James H.|publisher=John Wiley & Sons|year=2004|isbn=0-471-21487-6|location=Hoboken|page=2}}</ref> दोनों बहु-आयामी [[डेटा सेट|आँकड़े]] हैं जिनमें समय के साथ माप शामिल हैं। पैनल आँकड़े अनुदैर्ध्य आँकड़े का एक उपसमुच्चय है जहां अवलोकन हर बार समान विषयों के लिए होते हैं। | ||
टाइम सीरीज़ और [[क्रास सेक्शनल डाटा]] को पैनल | टाइम सीरीज़ और [[क्रास सेक्शनल डाटा]] को पैनल आँकड़े के विशेष मामलों के रूप में माना जा सकता है जो केवल एक आयाम में हैं (एक पैनल सदस्य या पूर्व के लिए अलग अलग, बाद के लिए एक समय बिंदु)। एक साहित्य खोज में अक्सर [[समय श्रृंखला]], क्रॉस-सेक्शनल या पैनल आँकड़े शामिल होते है। क्रॉस-पैनल आँकड़े (CPD) गणितीय और सांख्यिकीय विज्ञान में जानकारी का एक नवीन अभी तक कम अप्रमाणित वाला स्रोत है। CPD अन्य अनुसंधान प्रणालियों से अलग है क्योंकि यह स्पष्ट रूप से दिखाता है कि देशों के बीच स्वतंत्र और परतंत्र चर कैसे बदल सकते हैं। यह पैनल आँकड़े संग्रह शोधकर्ताओं को कई क्रॉस-सेक्शन और समय अवधि में चर के बीच संबंध की जांच करने और अन्य देशों में नीतिगत कार्यों के परिणामों का विश्लेषण करने की अनुमति देता है।<ref>{{Cite journal |last=Zaman |first=Khalid |date=2023-01-24 |title=क्रॉस-पैनल डेटा तकनीकों पर एक नोट|url=https://zenodo.org/record/7565625 |journal=Latest Developments in Econometrics |volume=1 |issue=1 |pages=1–7 |doi=10.5281/zenodo.7565625}}</ref> | ||
पैनल | |||
पैनल आँकड़े का उपयोग करने वाले अध्ययन को अनुदैर्ध्य अध्ययन या पैनल अध्ययन कहा जाता है। | |||
== उदाहरण == | == उदाहरण == | ||
Line 49: | Line 50: | ||
| 3 || 2017 || 3300 || 34 || 1 | | 3 || 2017 || 3300 || 34 || 1 | ||
|} | |} | ||
उपरोक्त एकाधिक प्रतिक्रिया क्रमचय प्रक्रिया (MRPP) उदाहरण में, पैनल संरचना वाले दो | उपरोक्त एकाधिक प्रतिक्रिया क्रमचय प्रक्रिया (MRPP) उदाहरण में, पैनल संरचना वाले दो आँकड़ेसेट दिखाए गए हैं और इसका उद्देश्य यह परीक्षण करना है कि नमूना आँकड़े में लोगों के बीच कोई महत्वपूर्ण अंतर है या नहीं। व्यक्तिगत विशेषताओं (आय, आयु, लिंग) को अलग-अलग व्यक्तियों और अलग-अलग वर्षों के लिए एकत्र किया जाता है। पहले आँकड़ेसेट में तीन साल (2016, 2017, 2018) तक हर साल दो व्यक्तियों (1, 2) का अवलोकन किया जाता है। दूसरे आँकड़ेसेट में, तीन व्यक्तियों (1, 2, 3) को तीन वर्षों (2016, 2017, 2018) में क्रमशः दो बार (व्यक्ति 1), तीन बार (व्यक्ति 2), और एक बार (व्यक्ति 3) देखा गया है। ; विशेष रूप से, व्यक्ति 1 वर्ष 2018 में नहीं देखा गया है और व्यक्ति 3 2016 या 2018 में नहीं देखा गया है। | ||
एक संतुलित पैनल (उदाहरण के लिए, उपरोक्त पहला | एक संतुलित पैनल (उदाहरण के लिए, उपरोक्त पहला आँकड़ेसेट) एक आँकड़ेसेट है जिसमें ''प्रत्येक'' पैनल सदस्य (अर्थात, व्यक्ति) ''प्रत्येक'' वर्ष मनाया जाता है। नतीजतन, यदि एक संतुलित पैनल में ''एन'' पैनल के सदस्य और ''टी'' अवधि शामिल हैं, तो आँकड़ेसेट में टिप्पणियों की संख्या (''एन'') जरूरी है {{math|''n'' {{=}} ''N''×''T''}}. | ||
एक असंतुलित पैनल (उदाहरण के लिए, ऊपर दिया गया दूसरा | एक असंतुलित पैनल (उदाहरण के लिए, ऊपर दिया गया दूसरा आँकड़ेसेट) एक आँकड़ेसेट है जिसमें हर अवधि में ''कम से कम एक'' पैनल सदस्य नहीं देखा जाता है। इसलिए, यदि एक असंतुलित पैनल में ''एन'' पैनल के सदस्य और ''टी'' अवधि शामिल हैं, तो निम्नलिखित सख्त असमानता आँकड़ेसेट में टिप्पणियों की संख्या (''एन'') के लिए लागू होती है: {{math|''n'' < ''N''×''T''}}. | ||
उपरोक्त दोनों | उपरोक्त दोनों आँकड़ेसेट लंबे प्रारूप में संरचित हैं, जहां एक पंक्ति प्रति समय एक अवलोकन रखती है। पैनल आँकड़े की संरचना का एक अन्य तरीका व्यापक प्रारूप होगा जहां एक पंक्ति समय में ''सभी'' बिंदुओं के लिए एक अवलोकन इकाई का प्रतिनिधित्व करती है (उदाहरण के लिए, विस्तृत प्रारूप में केवल दो (पहला उदाहरण) या तीन (दूसरा उदाहरण) पंक्तियां होंगी प्रत्येक समय-भिन्न चर (आय, आयु) के लिए अतिरिक्त कॉलम वाले आँकड़े। | ||
== विश्लेषण == | == विश्लेषण == | ||
Line 63: | Line 64: | ||
: <math>X_{it}, \quad i = 1, \dots, N, \quad t = 1, \dots, T, </math> | : <math>X_{it}, \quad i = 1, \dots, N, \quad t = 1, \dots, T, </math> | ||
कहाँ <math>i</math> व्यक्तिगत आयाम है और <math>t</math> समय आयाम है। एक सामान्य पैनल | कहाँ <math>i</math> व्यक्तिगत आयाम है और <math>t</math> समय आयाम है। एक सामान्य पैनल आँकड़े प्रतिगमन मॉडल के रूप में लिखा गया है <math>y_{it} = \alpha + \beta' X_{it} + u_{it}.</math> | ||
इस सामान्य मॉडल की सटीक संरचना पर विभिन्न धारणाएँ बनाई जा सकती हैं। [[निश्चित प्रभाव मॉडल]] और [[यादृच्छिक प्रभाव मॉडल]] दो महत्वपूर्ण मॉडल हैं। | इस सामान्य मॉडल की सटीक संरचना पर विभिन्न धारणाएँ बनाई जा सकती हैं। [[निश्चित प्रभाव मॉडल]] और [[यादृच्छिक प्रभाव मॉडल]] दो महत्वपूर्ण मॉडल हैं। | ||
एक सामान्य पैनल | एक सामान्य पैनल आँकड़े मॉडल पर विचार करें: | ||
: <math>y_{it} = \alpha + \beta' X_{it} + u_{it}, </math> | : <math>y_{it} = \alpha + \beta' X_{it} + u_{it}, </math> | ||
Line 73: | Line 74: | ||
<math>\mu_i</math> व्यक्तिगत-विशिष्ट, समय-अपरिवर्तनीय प्रभाव हैं (उदाहरण के लिए देशों के एक पैनल में इसमें भूगोल, जलवायु आदि शामिल हो सकते हैं) जो समय के साथ तय होते हैं। जबकि <math>v_{it}</math> एक समय-भिन्न यादृच्छिक घटक है। | <math>\mu_i</math> व्यक्तिगत-विशिष्ट, समय-अपरिवर्तनीय प्रभाव हैं (उदाहरण के लिए देशों के एक पैनल में इसमें भूगोल, जलवायु आदि शामिल हो सकते हैं) जो समय के साथ तय होते हैं। जबकि <math>v_{it}</math> एक समय-भिन्न यादृच्छिक घटक है। | ||
अगर <math>\mu_i</math> अप्रमाणित है, और कम से कम एक स्वतंत्र चर के साथ सहसंबद्ध है, तो यह एक मानक सामान्य न्यूनतम वर्ग प्रतिगमन में छोड़े गए चर पूर्वाग्रह का कारण होगा। हालाँकि, पैनल | अगर <math>\mu_i</math> अप्रमाणित है, और कम से कम एक स्वतंत्र चर के साथ सहसंबद्ध है, तो यह एक मानक सामान्य न्यूनतम वर्ग प्रतिगमन में छोड़े गए चर पूर्वाग्रह का कारण होगा। हालाँकि, पैनल आँकड़े विधियाँ, जैसे कि निश्चित प्रभाव अनुमानक या वैकल्पिक रूप से, [[प्रथम-अंतर अनुमानक]] का उपयोग इसे नियंत्रित करने के लिए किया जा सकता है। | ||
अगर <math>\mu_i</math> किसी भी स्वतंत्र चर के साथ सहसंबद्ध नहीं है, साधारण न्यूनतम वर्ग रैखिक प्रतिगमन विधियों का उपयोग प्रतिगमन मापदंडों के निष्पक्ष और सुसंगत अनुमानों को प्राप्त करने के लिए किया जा सकता है। हालाँकि, क्योंकि <math>\mu_i</math> समय के साथ तय हो जाता है, यह प्रतिगमन की त्रुटि अवधि में क्रमिक सहसंबंध को प्रेरित करेगा। इसका मतलब है कि अधिक कुशल आकलन तकनीक उपलब्ध हैं। यादृच्छिक प्रभाव एक ऐसी विधि है: यह व्यवहार्य सामान्यीकृत कम से कम वर्गों का एक विशेष मामला है जो अनुक्रमिक सहसंबंध की संरचना के लिए नियंत्रित करता है जो प्रेरित होता है <math>\mu_i</math>. | अगर <math>\mu_i</math> किसी भी स्वतंत्र चर के साथ सहसंबद्ध नहीं है, साधारण न्यूनतम वर्ग रैखिक प्रतिगमन विधियों का उपयोग प्रतिगमन मापदंडों के निष्पक्ष और सुसंगत अनुमानों को प्राप्त करने के लिए किया जा सकता है। हालाँकि, क्योंकि <math>\mu_i</math> समय के साथ तय हो जाता है, यह प्रतिगमन की त्रुटि अवधि में क्रमिक सहसंबंध को प्रेरित करेगा। इसका मतलब है कि अधिक कुशल आकलन तकनीक उपलब्ध हैं। यादृच्छिक प्रभाव एक ऐसी विधि है: यह व्यवहार्य सामान्यीकृत कम से कम वर्गों का एक विशेष मामला है जो अनुक्रमिक सहसंबंध की संरचना के लिए नियंत्रित करता है जो प्रेरित होता है <math>\mu_i</math>. | ||
=== गतिशील पैनल | === गतिशील पैनल आँकड़े === | ||
डायनेमिक पैनल | डायनेमिक पैनल आँकड़े उस मामले का वर्णन करता है जहां आश्रित चर के [[लैग ऑपरेटर]] को प्रतिगामी के रूप में उपयोग किया जाता है: | ||
: <math>y_{it} = \alpha + \beta' X_{it} +\gamma y_{it-1}+ u_{it}, </math> | : <math>y_{it} = \alpha + \beta' X_{it} +\gamma y_{it-1}+ u_{it}, </math> | ||
लैग्ड डिपेंडेंट वेरिएबल की उपस्थिति सख्त [[एक्सोजेनिटी (अर्थमिति)]] का उल्लंघन करती है, यानी [[एंडोजीनिटी (अर्थमिति)]] हो सकती है। निश्चित प्रभाव अनुमानक और प्रथम अंतर अनुमानक दोनों सख्त बहिर्जातता की धारणा पर भरोसा करते हैं। इसलिए, अगर <math>u_{i}</math> माना जाता है कि एक स्वतंत्र चर के साथ सहसंबद्ध है, एक वैकल्पिक अनुमान तकनीक का उपयोग किया जाना चाहिए। इस स्थिति में वाद्य चर या GMM तकनीकों का आमतौर पर उपयोग किया जाता है, जैसे कि अरेलानो-बॉन्ड अनुमानक। | लैग्ड डिपेंडेंट वेरिएबल की उपस्थिति सख्त [[एक्सोजेनिटी (अर्थमिति)]] का उल्लंघन करती है, यानी [[एंडोजीनिटी (अर्थमिति)]] हो सकती है। निश्चित प्रभाव अनुमानक और प्रथम अंतर अनुमानक दोनों सख्त बहिर्जातता की धारणा पर भरोसा करते हैं। इसलिए, अगर <math>u_{i}</math> माना जाता है कि एक स्वतंत्र चर के साथ सहसंबद्ध है, एक वैकल्पिक अनुमान तकनीक का उपयोग किया जाना चाहिए। इस स्थिति में वाद्य चर या GMM तकनीकों का आमतौर पर उपयोग किया जाता है, जैसे कि अरेलानो-बॉन्ड अनुमानक। | ||
== | == आँकड़े सेट जिनमें एक पैनल डिज़ाइन है == | ||
*[[रूस अनुदैर्ध्य निगरानी सर्वेक्षण]] (आरएलएमएस) | *[[रूस अनुदैर्ध्य निगरानी सर्वेक्षण]] (आरएलएमएस) | ||
Line 103: | Line 104: | ||
*[[उम्र बढ़ने का कोरियाई अनुदैर्ध्य अध्ययन]] (केएलओएसए) | *[[उम्र बढ़ने का कोरियाई अनुदैर्ध्य अध्ययन]] (केएलओएसए) | ||
== | == आँकड़े सेट जिनमें बहु-आयामी पैनल डिज़ाइन == है | ||
{{Main|Multidimensional panel data}} | {{Main|Multidimensional panel data}} | ||
Revision as of 08:52, 11 June 2023
This article includes a list of general references, but it lacks sufficient corresponding inline citations. (June 2020) (Learn how and when to remove this template message) |
सांख्यिकी और अर्थमिति में, पैनल आँकड़े और अनुदैर्ध्य आँकड़े[1][2] दोनों बहु-आयामी आँकड़े हैं जिनमें समय के साथ माप शामिल हैं। पैनल आँकड़े अनुदैर्ध्य आँकड़े का एक उपसमुच्चय है जहां अवलोकन हर बार समान विषयों के लिए होते हैं।
टाइम सीरीज़ और क्रास सेक्शनल डाटा को पैनल आँकड़े के विशेष मामलों के रूप में माना जा सकता है जो केवल एक आयाम में हैं (एक पैनल सदस्य या पूर्व के लिए अलग अलग, बाद के लिए एक समय बिंदु)। एक साहित्य खोज में अक्सर समय श्रृंखला, क्रॉस-सेक्शनल या पैनल आँकड़े शामिल होते है। क्रॉस-पैनल आँकड़े (CPD) गणितीय और सांख्यिकीय विज्ञान में जानकारी का एक नवीन अभी तक कम अप्रमाणित वाला स्रोत है। CPD अन्य अनुसंधान प्रणालियों से अलग है क्योंकि यह स्पष्ट रूप से दिखाता है कि देशों के बीच स्वतंत्र और परतंत्र चर कैसे बदल सकते हैं। यह पैनल आँकड़े संग्रह शोधकर्ताओं को कई क्रॉस-सेक्शन और समय अवधि में चर के बीच संबंध की जांच करने और अन्य देशों में नीतिगत कार्यों के परिणामों का विश्लेषण करने की अनुमति देता है।[3]
पैनल आँकड़े का उपयोग करने वाले अध्ययन को अनुदैर्ध्य अध्ययन या पैनल अध्ययन कहा जाता है।
उदाहरण
person | year | income | age | sex |
---|---|---|---|---|
1 | 2016 | 1300 | 27 | 1 |
1 | 2017 | 1600 | 28 | 1 |
1 | 2018 | 2000 | 29 | 1 |
2 | 2016 | 2000 | 38 | 2 |
2 | 2017 | 2300 | 39 | 2 |
2 | 2018 | 2400 | 40 | 2 |
person | year | income | age | sex |
---|---|---|---|---|
1 | 2016 | 1600 | 23 | 1 |
1 | 2017 | 1500 | 24 | 1 |
2 | 2016 | 1900 | 41 | 2 |
2 | 2017 | 2000 | 42 | 2 |
2 | 2018 | 2100 | 43 | 2 |
3 | 2017 | 3300 | 34 | 1 |
उपरोक्त एकाधिक प्रतिक्रिया क्रमचय प्रक्रिया (MRPP) उदाहरण में, पैनल संरचना वाले दो आँकड़ेसेट दिखाए गए हैं और इसका उद्देश्य यह परीक्षण करना है कि नमूना आँकड़े में लोगों के बीच कोई महत्वपूर्ण अंतर है या नहीं। व्यक्तिगत विशेषताओं (आय, आयु, लिंग) को अलग-अलग व्यक्तियों और अलग-अलग वर्षों के लिए एकत्र किया जाता है। पहले आँकड़ेसेट में तीन साल (2016, 2017, 2018) तक हर साल दो व्यक्तियों (1, 2) का अवलोकन किया जाता है। दूसरे आँकड़ेसेट में, तीन व्यक्तियों (1, 2, 3) को तीन वर्षों (2016, 2017, 2018) में क्रमशः दो बार (व्यक्ति 1), तीन बार (व्यक्ति 2), और एक बार (व्यक्ति 3) देखा गया है। ; विशेष रूप से, व्यक्ति 1 वर्ष 2018 में नहीं देखा गया है और व्यक्ति 3 2016 या 2018 में नहीं देखा गया है।
एक संतुलित पैनल (उदाहरण के लिए, उपरोक्त पहला आँकड़ेसेट) एक आँकड़ेसेट है जिसमें प्रत्येक पैनल सदस्य (अर्थात, व्यक्ति) प्रत्येक वर्ष मनाया जाता है। नतीजतन, यदि एक संतुलित पैनल में एन पैनल के सदस्य और टी अवधि शामिल हैं, तो आँकड़ेसेट में टिप्पणियों की संख्या (एन) जरूरी है n = N×T.
एक असंतुलित पैनल (उदाहरण के लिए, ऊपर दिया गया दूसरा आँकड़ेसेट) एक आँकड़ेसेट है जिसमें हर अवधि में कम से कम एक पैनल सदस्य नहीं देखा जाता है। इसलिए, यदि एक असंतुलित पैनल में एन पैनल के सदस्य और टी अवधि शामिल हैं, तो निम्नलिखित सख्त असमानता आँकड़ेसेट में टिप्पणियों की संख्या (एन) के लिए लागू होती है: n < N×T.
उपरोक्त दोनों आँकड़ेसेट लंबे प्रारूप में संरचित हैं, जहां एक पंक्ति प्रति समय एक अवलोकन रखती है। पैनल आँकड़े की संरचना का एक अन्य तरीका व्यापक प्रारूप होगा जहां एक पंक्ति समय में सभी बिंदुओं के लिए एक अवलोकन इकाई का प्रतिनिधित्व करती है (उदाहरण के लिए, विस्तृत प्रारूप में केवल दो (पहला उदाहरण) या तीन (दूसरा उदाहरण) पंक्तियां होंगी प्रत्येक समय-भिन्न चर (आय, आयु) के लिए अतिरिक्त कॉलम वाले आँकड़े।
विश्लेषण
एक पैनल का रूप है
कहाँ व्यक्तिगत आयाम है और समय आयाम है। एक सामान्य पैनल आँकड़े प्रतिगमन मॉडल के रूप में लिखा गया है इस सामान्य मॉडल की सटीक संरचना पर विभिन्न धारणाएँ बनाई जा सकती हैं। निश्चित प्रभाव मॉडल और यादृच्छिक प्रभाव मॉडल दो महत्वपूर्ण मॉडल हैं।
एक सामान्य पैनल आँकड़े मॉडल पर विचार करें:
व्यक्तिगत-विशिष्ट, समय-अपरिवर्तनीय प्रभाव हैं (उदाहरण के लिए देशों के एक पैनल में इसमें भूगोल, जलवायु आदि शामिल हो सकते हैं) जो समय के साथ तय होते हैं। जबकि एक समय-भिन्न यादृच्छिक घटक है।
अगर अप्रमाणित है, और कम से कम एक स्वतंत्र चर के साथ सहसंबद्ध है, तो यह एक मानक सामान्य न्यूनतम वर्ग प्रतिगमन में छोड़े गए चर पूर्वाग्रह का कारण होगा। हालाँकि, पैनल आँकड़े विधियाँ, जैसे कि निश्चित प्रभाव अनुमानक या वैकल्पिक रूप से, प्रथम-अंतर अनुमानक का उपयोग इसे नियंत्रित करने के लिए किया जा सकता है।
अगर किसी भी स्वतंत्र चर के साथ सहसंबद्ध नहीं है, साधारण न्यूनतम वर्ग रैखिक प्रतिगमन विधियों का उपयोग प्रतिगमन मापदंडों के निष्पक्ष और सुसंगत अनुमानों को प्राप्त करने के लिए किया जा सकता है। हालाँकि, क्योंकि समय के साथ तय हो जाता है, यह प्रतिगमन की त्रुटि अवधि में क्रमिक सहसंबंध को प्रेरित करेगा। इसका मतलब है कि अधिक कुशल आकलन तकनीक उपलब्ध हैं। यादृच्छिक प्रभाव एक ऐसी विधि है: यह व्यवहार्य सामान्यीकृत कम से कम वर्गों का एक विशेष मामला है जो अनुक्रमिक सहसंबंध की संरचना के लिए नियंत्रित करता है जो प्रेरित होता है .
गतिशील पैनल आँकड़े
डायनेमिक पैनल आँकड़े उस मामले का वर्णन करता है जहां आश्रित चर के लैग ऑपरेटर को प्रतिगामी के रूप में उपयोग किया जाता है:
लैग्ड डिपेंडेंट वेरिएबल की उपस्थिति सख्त एक्सोजेनिटी (अर्थमिति) का उल्लंघन करती है, यानी एंडोजीनिटी (अर्थमिति) हो सकती है। निश्चित प्रभाव अनुमानक और प्रथम अंतर अनुमानक दोनों सख्त बहिर्जातता की धारणा पर भरोसा करते हैं। इसलिए, अगर माना जाता है कि एक स्वतंत्र चर के साथ सहसंबद्ध है, एक वैकल्पिक अनुमान तकनीक का उपयोग किया जाना चाहिए। इस स्थिति में वाद्य चर या GMM तकनीकों का आमतौर पर उपयोग किया जाता है, जैसे कि अरेलानो-बॉन्ड अनुमानक।
आँकड़े सेट जिनमें एक पैनल डिज़ाइन है
- रूस अनुदैर्ध्य निगरानी सर्वेक्षण (आरएलएमएस)
- जर्मन सामाजिक-आर्थिक पैनल (एसओईपी)
- ऑस्ट्रेलिया सर्वेक्षण में घरेलू, आय और श्रम गतिशीलता (हिल्डा)
- ब्रिटिश घरेलू पैनल सर्वेक्षण (बीएचपीएस)
- पारिवारिक आय और रोजगार का सर्वेक्षण (SoFIE)
- आय और कार्यक्रम भागीदारी का सर्वेक्षण (एसआईपीपी)
- एलएलएमडीबी (एलएलएमडीबी)
- लॉन्गिट्यूडिनल इंटरनेट स्टडीज फॉर द सोशल साइंसेज (एलआईएसएस)
- आय गतिकी का पैनल अध्ययन (PSID)
- कोरियाई श्रम और आय पैनल अध्ययन (केएलआईपीएस)
- चीन परिवार पैनल अध्ययन (सीएफपीएस)
- जर्मन परिवार पैनल (पेयरफैम)
- राष्ट्रीय अनुदैर्ध्य सर्वेक्षण (एनएलएसवाई)
- श्रम बल सर्वेक्षण (एलएफएस)
- कोरियाई युवा पैनल (YP)
- उम्र बढ़ने का कोरियाई अनुदैर्ध्य अध्ययन (केएलओएसए)
== आँकड़े सेट जिनमें बहु-आयामी पैनल डिज़ाइन == है
टिप्पणियाँ
- ↑ Diggle, Peter J.; Heagerty, Patrick; Liang, Kung-Yee; Zeger, Scott L. (2002). अनुदैर्ध्य डेटा का विश्लेषण (2nd ed.). Oxford University Press. p. 2. ISBN 0-19-852484-6.
- ↑ Fitzmaurice, Garrett M.; Laird, Nan M.; Ware, James H. (2004). अनुप्रयुक्त अनुदैर्ध्य विश्लेषण. Hoboken: John Wiley & Sons. p. 2. ISBN 0-471-21487-6.
- ↑ Zaman, Khalid (2023-01-24). "क्रॉस-पैनल डेटा तकनीकों पर एक नोट". Latest Developments in Econometrics. 1 (1): 1–7. doi:10.5281/zenodo.7565625.
संदर्भ
- Baltagi, Badi H. (2008). Econometric Analysis of Panel Data (Fourth ed.). Chichester: John Wiley & Sons. ISBN 978-0-470-51886-1.
- Davies, A.; Lahiri, K. (1995). "A New Framework for Testing Rationality and Measuring Aggregate Shocks Using Panel Data". Journal of Econometrics. 68 (1): 205–227. doi:10.1016/0304-4076(94)01649-K.
- Davies, A.; Lahiri, K. (2000). "Re-examining the Rational Expectations Hypothesis Using Panel Data on Multi-Period Forecasts". Analysis of Panels and Limited Dependent Variable Models. Cambridge: Cambridge University Press. pp. 226–254. ISBN 0-521-63169-6.
- Frees, E. (2004). Longitudinal and Panel Data: Analysis and Applications in the Social Sciences. New York: Cambridge University Press. ISBN 0-521-82828-7.
- Hsiao, Cheng (2003). Analysis of Panel Data (Second ed.). New York: Cambridge University Press. ISBN 0-521-52271-4.