डीप इनलेस्टिक स्कैटरिंग: Difference between revisions

From Vigyanwiki
Line 15: Line 15:
शब्दावली विज्ञान के प्रत्येक भाग को समझाने के लिए, "बिखराव" का तात्पर्य [[लेपटोन]] (इलेक्ट्रॉन, म्यूऑन, आदि) के विक्षेपण से है। विक्षेपण के कोणों को मापने से प्रक्रिया की प्रकृति के बारे में जानकारी मिलती है। अप्रत्यास्थ प्रकीर्णन का अर्थ है कि लक्ष्य कुछ गतिज ऊर्जा को अवशोषित करता है। वास्तव में, उपयोग किए गए लेप्टान की बहुत उच्च ऊर्जा पर, लक्ष्य "टूट जाता है" और कई नए कण उत्सर्जित करता है। ये कण हैड्रॉन हैं और, अधिक सरलीकृत करने के लिए, इस प्रक्रिया की लक्ष्य के एक घटक [[क्वार्क]] के रूप में व्याख्या की जाती है जिसे लक्ष्य हैड्रॉन से "बाहर" किया जाता है, और [[क्वार्क कारावास]] के कारण, क्वार्क वास्तव में देखे नहीं जाते हैं, बल्कि [[haronization|हेड्रोनाइजेशन]] द्वारा अवलोकन योग्य कणों का उत्पादन करते हैं। "डीप" लेप्टान की उच्च ऊर्जा को संदर्भित करता है, जो इसे बहुत छोटी [[ पदार्थ तरंग |तरंग दैर्ध्य]] देता है और इसलिए लक्ष्य हैड्रॉन के आकार की तुलना में छोटी दूरी की जांच करने की क्षमता देता है, इसलिए यह हैड्रॉन के "गहरे अंदर" की जांच कर सकता है। साथ ही, ध्यान दें कि पर्टर्बेटिव सिद्धांत (क्वांटम यांत्रिकी) सन्निकटन में यह लेप्टान से उत्सर्जित और लक्ष्य हैड्रॉन द्वारा अवशोषित एक उच्च-ऊर्जा [[आभासी कण|आभासी फोटॉन]] है जो ऊर्जा को इसके घटक क्वार्क में से एक में स्थानांतरित करता है, जैसा कि आसन्न आरेख में है।
शब्दावली विज्ञान के प्रत्येक भाग को समझाने के लिए, "बिखराव" का तात्पर्य [[लेपटोन]] (इलेक्ट्रॉन, म्यूऑन, आदि) के विक्षेपण से है। विक्षेपण के कोणों को मापने से प्रक्रिया की प्रकृति के बारे में जानकारी मिलती है। अप्रत्यास्थ प्रकीर्णन का अर्थ है कि लक्ष्य कुछ गतिज ऊर्जा को अवशोषित करता है। वास्तव में, उपयोग किए गए लेप्टान की बहुत उच्च ऊर्जा पर, लक्ष्य "टूट जाता है" और कई नए कण उत्सर्जित करता है। ये कण हैड्रॉन हैं और, अधिक सरलीकृत करने के लिए, इस प्रक्रिया की लक्ष्य के एक घटक [[क्वार्क]] के रूप में व्याख्या की जाती है जिसे लक्ष्य हैड्रॉन से "बाहर" किया जाता है, और [[क्वार्क कारावास]] के कारण, क्वार्क वास्तव में देखे नहीं जाते हैं, बल्कि [[haronization|हेड्रोनाइजेशन]] द्वारा अवलोकन योग्य कणों का उत्पादन करते हैं। "डीप" लेप्टान की उच्च ऊर्जा को संदर्भित करता है, जो इसे बहुत छोटी [[ पदार्थ तरंग |तरंग दैर्ध्य]] देता है और इसलिए लक्ष्य हैड्रॉन के आकार की तुलना में छोटी दूरी की जांच करने की क्षमता देता है, इसलिए यह हैड्रॉन के "गहरे अंदर" की जांच कर सकता है। साथ ही, ध्यान दें कि पर्टर्बेटिव सिद्धांत (क्वांटम यांत्रिकी) सन्निकटन में यह लेप्टान से उत्सर्जित और लक्ष्य हैड्रॉन द्वारा अवशोषित एक उच्च-ऊर्जा [[आभासी कण|आभासी फोटॉन]] है जो ऊर्जा को इसके घटक क्वार्क में से एक में स्थानांतरित करता है, जैसा कि आसन्न आरेख में है।
== इतिहास ==
== इतिहास ==
{{see also | Quark#History }}
{{see also | क्वार्क#इतिहास }}


भौतिकी का [[मानक मॉडल]], विशेष रूप से 1960 के दशक में [[मरे गेल-मान]] का काम, [[कण भौतिकी]] में पहले की कई अलग-अलग अवधारणाओं को एक, अपेक्षाकृत सीधी, योजना में एकजुट करने में सफल रहा था। संक्षेप में, तीन प्रकार के कण थे:
भौतिकी का [[मानक मॉडल]], विशेष रूप से 1960 के दशक में [[मरे गेल-मान]] का काम, [[कण भौतिकी]] में पहले से मौजूद असमान अवधारणाओं को एक, अपेक्षाकृत सरल, योजना में एकजुट करने में सफल रहा था। संक्षेप में, कण तीन प्रकार के थे:


* लेप्टान, जो कम द्रव्यमान वाले कण जैसे इलेक्ट्रॉन, न्यूट्रिनो और उनके प्रतिकण थे। उनके पास पूर्णांक विद्युत आवेश है।
* लेप्टान, जो कम द्रव्यमान वाले कण थे जैसे इलेक्ट्रॉन, न्यूट्रिनो और उनके प्रतिकण। इनमें पूर्णांक विद्युत आवेश होता है।
* [[गेज बोसोन]], जो कणों का आदान-प्रदान करने वाले कण थे। ये बड़े पैमाने पर, आसानी से पता लगाने वाले फोटॉन (विद्युत-चुंबकीय बल के वाहक) से लेकर विदेशी (हालांकि अभी भी द्रव्यमान रहित) [[ग्लुओन]] हैं जो मजबूत परमाणु बल ले जाते हैं।
* [[गेज बोसोन]], जो कणों का आदान-प्रदान करने वाले कण थे। ये बड़े पैमाने पर, आसानी से पता लगाने वाले फोटॉन (विद्युत-चुंबकीय बल के वाहक) से लेकर विदेशी (हालांकि अभी भी द्रव्यमान रहित) [[ग्लुओन]] हैं जो मजबूत परमाणु बल ले जाते हैं।
* क्वार्क, जो बड़े पैमाने पर कण थे जो भिन्नात्मक विद्युत आवेशों को वहन करते थे। वे हैड्रोन के निर्माण खंड हैं। वे मजबूत अंतःक्रिया से प्रभावित होने वाले एकमात्र कण भी हैं।
* क्वार्क, जो बड़े पैमाने पर कण थे जो भिन्नात्मक विद्युत आवेशों को वहन करते थे। वे हैड्रोन के निर्माण खंड हैं। वे मजबूत अंतःक्रिया से प्रभावित होने वाले एकमात्र कण भी हैं।
*<br />भौतिकी का [[मानक मॉडल]], विशेष रूप से 1960 के दशक में [[मरे गेल-मान]] का काम, [[कण भौतिकी]] में पहले की कई अलग-अलग अवधारणाओं को एक, अपेक्षाकृत सीधी, योजना में एकजुट करने में सफल रहा था। संक्षेप में, तीन प्रकार के कण थे:
** लेप्टान, जो कम द्रव्यमान वाले कण जैसे इलेक्ट्रॉन, न्यूट्रिनो और उनके प्रतिकण थे। उनके पास पूर्णांक विद्युत आवेश है।
** [[गेज बोसोन]], जो कणों का आदान-प्रदान करने वाले कण थे। ये बड़े पैमाने पर, आसानी से पता लगाने वाले फोटॉन (विद्युत-चुंबकीय बल के वाहक) से लेकर विदेशी (हालांकि अभी भी द्रव्यमान रहित) [[ग्लुओन]] हैं जो मजबूत परमाणु बल ले जाते हैं।
** क्वार्क, जो बड़े पैमाने पर कण थे जो भिन्नात्मक विद्युत आवेशों को वहन करते थे। वे हैड्रोन के निर्माण खंड हैं। वे मजबूत अंतःक्रिया से प्रभावित होने वाले एकमात्र कण भी हैं।


[[लेप्टॉन]] का पता 1897 से चला था, जब जे. जे. थॉमसन ने दिखाया था कि विद्युत धारा इलेक्ट्रॉनों का प्रवाह है। कुछ बोसोन का नियमित रूप से पता लगाया जा रहा था, हालाँकि W<sup>+</sup>, डब्ल्यू<sup>-</sup> और Z<sup>0</sup> [[विद्युत शक्ति]] के कण केवल 1980 के दशक की शुरुआत में ही स्पष्ट रूप से देखे गए थे, और ग्लून्स को [[हैम्बर्ग]] में [[DESY]] में लगभग उसी समय मजबूती से पिन किया गया था। हालाँकि, क्वार्क अभी भी मायावी थे।
[[लेप्टॉन]] का पता 1897 से चला था, जब जे. जे. थॉमसन ने दिखाया था कि विद्युत धारा इलेक्ट्रॉनों का प्रवाह है। कुछ बोसोन का नियमित रूप से पता लगाया जा रहा था, हालाँकि W<sup>+</sup>, डब्ल्यू<sup>-</sup> और Z<sup>0</sup> [[विद्युत शक्ति]] के कण केवल 1980 के दशक की शुरुआत में ही स्पष्ट रूप से देखे गए थे, और ग्लून्स को [[हैम्बर्ग]] में [[DESY]] में लगभग उसी समय मजबूती से पिन किया गया था। हालाँकि, क्वार्क अभी भी मायावी थे।

Revision as of 18:36, 24 June 2023

एक हैड्रॉन (एच) पर एक लेप्टान (एल) का डीप इनलेस्टिक स्कैटरिंग, पर्टुरेटिव एक्सपेंशन में अग्रणी क्रम में। वर्चुअल फोटॉन (γ*) हैड्रोन से क्वार्क (q) को बाहर निकालता है।

डीप इनलेस्टिक स्कैटरिंग उस प्रक्रिया को दिया गया नाम है जिसका उपयोग इलेक्ट्रॉनों, म्यूऑन और न्युट्रीनो का उपयोग करके हैड्रोन (विशेष रूप से बैरियन, जैसे प्रोटॉन और न्यूट्रॉन) के अंदर की जांच करने के लिए किया जाता है।[1][2] इसका पहली बार प्रयास 1960 और 1970 के दशक में किया गया था और क्वार्क की वास्तविकता का पहला ठोस सबूत प्रदान किया गया था, जिसे उस बिंदु तक कई लोग पूरी तरह से गणितीय घटना मानते थे। यह प्रकीर्णन कण की बहुत अधिक ऊर्जा के लिए रदरफोर्ड प्रकीर्णन का विस्तार है और इस प्रकार नाभिक के घटकों के बहुत महीन विभेदन तक विस्तार है।

हेनरी वे केंडल, जेरोम इसाक फ्रीडमैन और रिचर्ड ई. टेलर 1990 के नोबेल पुरस्कार के संयुक्त प्राप्तकर्ता थे, जिन्होंने "प्रोटॉन और बाध्य न्यूट्रॉन पर इलेक्ट्रॉनों के गहरे अप्रत्यास्थ प्रकीर्णन से संबंधित उनकी अग्रणी जांच के लिए, जो कण भौतिकी में क्वार्क मॉडल के विकास के लिए आवश्यक महत्व रखते है।"[3]

विवरण

शब्दावली विज्ञान के प्रत्येक भाग को समझाने के लिए, "बिखराव" का तात्पर्य लेपटोन (इलेक्ट्रॉन, म्यूऑन, आदि) के विक्षेपण से है। विक्षेपण के कोणों को मापने से प्रक्रिया की प्रकृति के बारे में जानकारी मिलती है। अप्रत्यास्थ प्रकीर्णन का अर्थ है कि लक्ष्य कुछ गतिज ऊर्जा को अवशोषित करता है। वास्तव में, उपयोग किए गए लेप्टान की बहुत उच्च ऊर्जा पर, लक्ष्य "टूट जाता है" और कई नए कण उत्सर्जित करता है। ये कण हैड्रॉन हैं और, अधिक सरलीकृत करने के लिए, इस प्रक्रिया की लक्ष्य के एक घटक क्वार्क के रूप में व्याख्या की जाती है जिसे लक्ष्य हैड्रॉन से "बाहर" किया जाता है, और क्वार्क कारावास के कारण, क्वार्क वास्तव में देखे नहीं जाते हैं, बल्कि हेड्रोनाइजेशन द्वारा अवलोकन योग्य कणों का उत्पादन करते हैं। "डीप" लेप्टान की उच्च ऊर्जा को संदर्भित करता है, जो इसे बहुत छोटी तरंग दैर्ध्य देता है और इसलिए लक्ष्य हैड्रॉन के आकार की तुलना में छोटी दूरी की जांच करने की क्षमता देता है, इसलिए यह हैड्रॉन के "गहरे अंदर" की जांच कर सकता है। साथ ही, ध्यान दें कि पर्टर्बेटिव सिद्धांत (क्वांटम यांत्रिकी) सन्निकटन में यह लेप्टान से उत्सर्जित और लक्ष्य हैड्रॉन द्वारा अवशोषित एक उच्च-ऊर्जा आभासी फोटॉन है जो ऊर्जा को इसके घटक क्वार्क में से एक में स्थानांतरित करता है, जैसा कि आसन्न आरेख में है।

इतिहास

भौतिकी का मानक मॉडल, विशेष रूप से 1960 के दशक में मरे गेल-मान का काम, कण भौतिकी में पहले से मौजूद असमान अवधारणाओं को एक, अपेक्षाकृत सरल, योजना में एकजुट करने में सफल रहा था। संक्षेप में, कण तीन प्रकार के थे:

  • लेप्टान, जो कम द्रव्यमान वाले कण थे जैसे इलेक्ट्रॉन, न्यूट्रिनो और उनके प्रतिकण। इनमें पूर्णांक विद्युत आवेश होता है।
  • गेज बोसोन, जो कणों का आदान-प्रदान करने वाले कण थे। ये बड़े पैमाने पर, आसानी से पता लगाने वाले फोटॉन (विद्युत-चुंबकीय बल के वाहक) से लेकर विदेशी (हालांकि अभी भी द्रव्यमान रहित) ग्लुओन हैं जो मजबूत परमाणु बल ले जाते हैं।
  • क्वार्क, जो बड़े पैमाने पर कण थे जो भिन्नात्मक विद्युत आवेशों को वहन करते थे। वे हैड्रोन के निर्माण खंड हैं। वे मजबूत अंतःक्रिया से प्रभावित होने वाले एकमात्र कण भी हैं।

  • भौतिकी का मानक मॉडल, विशेष रूप से 1960 के दशक में मरे गेल-मान का काम, कण भौतिकी में पहले की कई अलग-अलग अवधारणाओं को एक, अपेक्षाकृत सीधी, योजना में एकजुट करने में सफल रहा था। संक्षेप में, तीन प्रकार के कण थे:
    • लेप्टान, जो कम द्रव्यमान वाले कण जैसे इलेक्ट्रॉन, न्यूट्रिनो और उनके प्रतिकण थे। उनके पास पूर्णांक विद्युत आवेश है।
    • गेज बोसोन, जो कणों का आदान-प्रदान करने वाले कण थे। ये बड़े पैमाने पर, आसानी से पता लगाने वाले फोटॉन (विद्युत-चुंबकीय बल के वाहक) से लेकर विदेशी (हालांकि अभी भी द्रव्यमान रहित) ग्लुओन हैं जो मजबूत परमाणु बल ले जाते हैं।
    • क्वार्क, जो बड़े पैमाने पर कण थे जो भिन्नात्मक विद्युत आवेशों को वहन करते थे। वे हैड्रोन के निर्माण खंड हैं। वे मजबूत अंतःक्रिया से प्रभावित होने वाले एकमात्र कण भी हैं।

लेप्टॉन का पता 1897 से चला था, जब जे. जे. थॉमसन ने दिखाया था कि विद्युत धारा इलेक्ट्रॉनों का प्रवाह है। कुछ बोसोन का नियमित रूप से पता लगाया जा रहा था, हालाँकि W+, डब्ल्यू- और Z0 विद्युत शक्ति के कण केवल 1980 के दशक की शुरुआत में ही स्पष्ट रूप से देखे गए थे, और ग्लून्स को हैम्बर्ग में DESY में लगभग उसी समय मजबूती से पिन किया गया था। हालाँकि, क्वार्क अभी भी मायावी थे।

अर्नेस्ट रदरफोर्ड, 20वीं शताब्दी के प्रारंभिक वर्षों में नेल्सन के अभूतपूर्व प्रयोगों के प्रथम बैरन रदरफोर्ड पर आरेखण, क्वार्क का पता लगाने के लिए विचार तैयार किए गए थे। रदरफोर्ड ने सोने के परमाणुओं पर अल्फा कणों को फायर करके साबित किया था कि परमाणुओं के केंद्र में एक छोटा, विशाल, आवेशित नाभिक होता है। अधिकांश कम या कोई विचलन के साथ चले गए थे, लेकिन कुछ बड़े कोणों से विचलित हो गए थे या सीधे वापस आ गए थे। इसने सुझाव दिया कि परमाणुओं की आंतरिक संरचना और बहुत सारी खाली जगह थी।

बेरिऑन के आंतरिक भाग की जांच करने के लिए, एक छोटे, मर्मज्ञ और आसानी से उत्पादित कण का उपयोग करने की आवश्यकता होती है। इलेक्ट्रॉन इस भूमिका के लिए आदर्श थे, क्योंकि वे प्रचुर मात्रा में होते हैं और अपने विद्युत आवेश के कारण आसानी से उच्च ऊर्जा में त्वरित हो जाते हैं। 1968 में, स्टैनफोर्ड रैखिक त्वरक केंद्र (SLAC) में, इलेक्ट्रॉनों को परमाणु नाभिक में प्रोटॉन और न्यूट्रॉन पर निकाल दिया गया।[4][5][6] बाद के प्रयोग[2]म्यूऑन और न्यूट्रिनो के साथ आयोजित किए गए, लेकिन वही सिद्धांत लागू होते हैं।[1][7] टक्कर कुछ गतिज ऊर्जा को अवशोषित करती है, और इस तरह यह अप्रत्यास्थ प्रकीर्णन है। यह रदरफोर्ड बिखरने के विपरीत है, जो लोचदार बिखरने वाला है: गतिज ऊर्जा का कोई नुकसान नहीं। इलेक्ट्रॉन नाभिक से निकलता है, और उसके प्रक्षेपवक्र और वेग का पता लगाया जा सकता है।

परिणामों के विश्लेषण से यह निष्कर्ष निकला कि हैड्रॉन में वास्तव में आंतरिक संरचना होती है।

प्रयोग महत्वपूर्ण थे क्योंकि उन्होंने न केवल क्वार्क की भौतिक वास्तविकता की पुष्टि की, बल्कि यह भी साबित किया कि मानक मॉडल कण भौतिकविदों के लिए शोध का सही तरीका था।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Devenish, Robin; Cooper-Sarkar, Amanda (2003). डीप इनलेस्टिक स्कैटरिंग. doi:10.1093/acprof:oso/9780198506713.001.0001. ISBN 9780198506713.
  2. 2.0 2.1 Feltesse, Joël (March 2012). Introduction to Deep Inelastic Scattering: Past and Present. XX International Workshop on Deep-Inelastic Scattering and Related Subjects. University of Bonn. doi:10.3204/DESY-PROC-2012-02/6.
  3. "नोबेल पुरस्कार उद्धरण". Nobelprize.org. Retrieved 2011-01-08.
  4. E. D. Bloom; et al. (1969). "High-Energy Inelastic ep Scattering at 6° and 10°". Physical Review Letters. 23 (16): 930–934. Bibcode:1969PhRvL..23..930B. doi:10.1103/PhysRevLett.23.930.
  5. M. Breidenbach; et al. (1969). "Observed Behavior of Highly Inelastic Electron–Proton Scattering". Physical Review Letters. 23 (16): 935–939. Bibcode:1969PhRvL..23..935B. doi:10.1103/PhysRevLett.23.935. OSTI 1444731. S2CID 2575595.
  6. J. I. Friedman. "The Road to the Nobel Prize". Hue University. Archived from the original on 2008-12-25. Retrieved 2012-02-25.
  7. Jaffe, R.L. (1985). "Deep Inelastic Scattering with Application to Nuclear Targets". arXiv:2212.05616 [hep-ph].


अग्रिम पठन